10,108 research outputs found

    Component-Based Interactive Framework for Intelligent Transportation Cyber-Physical Systems

    Get PDF
    While emerging technology for self-driving automation in vehicles progresses rapidly, the transition to an era of roads full of fully connected and automated vehicles (CAVs) may take longer than expected. Until then, it is inevitable that CAVs should coexist and interact with drivers of non-autonomous vehicles (NAVs) in urban roads. During this period of transition, it is critical to provide road safety with the mixed vehicular traffic and uncertainty caused by human drivers. To investigate the issues caused by the coexistence and interaction with humans, we propose to build a component-based and interactive intelligent transportation cyber-physical systems (ITCPS) framework. Our design of the interactive ITCPS framework aims to provide a standardized structure for users by defining core components. The framework is specified by behavior models and interfaces for the desired ITCPS components and is implemented as a form of human and hardware-in-the-loop system. We developed an intersection crossing assistance service and an automatic emergency braking service as an example of practical applications using the framework. To evaluate the framework, we tested its performance to show how effectively it operates while supporting real-time processing. The results indicate that it satisfies the timing requirements of vehicle-to-vehicle (V2V) communication and the limited processing time required for performing the functions of behavior models, even though the traffic volume reaches the road capacity. A case study using statistical analysis is conducted to assess the practical value of the developed experimental environment. The results of the case study validate the reliability among the specified variables for the experiments involving human drivers. It has shown that V2V communication support has positive effects on road safety, including intersection safety, braking events, and perception-reaction time (PRT) of the drivers. Furthermore, V2V communication support and PRT are identified as the important indicators affecting road safety at an un-signalized intersection. The proposed interactive framework is expected to contribute in constructing a comprehensive environment for the urban ITCPS and providing experimental support for the analysis of human behavior in the coexistence environment. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.1

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Towards Transportation Digital Twin Systems for Traffic Safety and Mobility Applications: A Review

    Full text link
    Digital twin (DT) systems aim to create virtual replicas of physical objects that are updated in real time with their physical counterparts and evolve alongside the physical assets throughout its lifecycle. Transportation systems are poised to significantly benefit from this new paradigm. In particular, DT technology can augment the capabilities of intelligent transportation systems. However, the development and deployment of networkwide transportation DT systems need to take into consideration the scale and dynamic nature of future connected and automated transportation systems. Motivated by the need of understanding the requirements and challenges involved in developing and implementing such systems, this paper proposes a hierarchical concept for a Transportation DT (TDT) system starting from individual transportation assets and building up to the entire networkwide TDT. A reference architecture is proposed for TDT systems that could be used as a guide in developing TDT systems at any scale within the presented hierarchical concept. In addition, several use cases are presented based upon the reference architecture which illustrate the utility of a TDT system from transportation safety, mobility and environmental applications perspective. This is followed by a review of current studies in the domain of TDT systems. Finally, the critical challenges and promising future research directions in TDT are discussed to overcome existing barriers to realize a safe and operationally efficient connected and automated transportation systems.Comment: 15 pages, 2 figures; corrected issue in author(s) fiel

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE
    corecore