11,863 research outputs found

    Compositional Analysis Techniques For Multiprocessor Soft Real-Time Scheduling

    Get PDF
    The design of systems in which timing constraints must be met (real-time systems) is being affected by three trends in hardware and software development. First, in the past few years, multiprocessor and multicore platforms have become standard in desktop and server systems and continue to expand in the domain of embedded systems. Second, real-time concepts are being applied in the design of general-purpose operating systems (like Linux) and attempts are being made to tailor these systems to support tasks with timing constraints. Third, in many embedded systems, it is now more economical to use a single multiprocessor instead of several uniprocessor elements; this motivates the need to share the increasing processing capacity of multiprocessor platforms among several applications supplied by different vendors and each having different timing constraints in a manner that ensures that these constraints were met. These trends suggest the need for mechanisms that enable real-time tasks to be bundled into multiple components and integrated in larger settings. There is a substantial body of prior work on the multiprocessor schedulability analysis of real-time systems modeled as periodic and sporadic task systems. Unfortunately, these standard task models can be pessimistic if long chains of dependent tasks are being analyzed. In work that introduces less pessimistic and more sophisticated workload models, only partitioned scheduling is assumed so that each task is statically assigned to some processor. This results in pessimism in the amount of needed processing resources. In this dissertation, we extend prior work on multiprocessor soft real-time scheduling and construct new analysis tools that can be used to design component-based soft real-time systems. These tools allow multiprocessor real-time systems to be designed and analyzed for which standard workload and platform models are inapplicable and for which state-of-the-art uniprocessor and multiprocessor analysis techniques give results that are too pessimistic

    Compositional Analysis of Real-Time Embedded Systems

    Get PDF
    This tutorial is concerned with various aspects of component-based design and compositional analysis of real-time embedded systems. It will first give an overview of component-based frameworks and their underlying principles. It will then go in-depth into abstraction methods for real-time components and techniques for computing their optimal interfaces, for both systems implemented on uniprocessor and multiprocessor platforms, as well as extensions to multi-mode systems. Besides theoretical aspects, the tutorial will also present an implementation of the compositional analysis framework on Xen virtualization and a demonstration of the CARTS toolset with several examples seeing the techniques in action. It will also include two case studies highlighting the utility of the framework, including the ARINC-653 avionics software and a smart-phone application. We will conclude the tutorial with a number of open challenges and research opportunities in this domain

    A Framework for Hierarchical Scheduling on Multiprocessors: From Application Requirements to Run-Time Allocation

    Get PDF
    Hierarchical scheduling is a promising methodology for designing and deploying real-time applications, since it enables component-based design and analysis, and supports temporal isolation among competing applications. In hierarchical scheduling an application is described by means of a temporal interface. The designer faces the problem of how to derive the interface parameters so to make the application schedulable, at the same time minimizing the waste of computational resources. The problem is particularly relevant in multiprocessor systems, where it is not clear yet how the interface parameters influence the schedulability of the application and allocation on the physical platform. In this paper we present three novel contributions to hierarchical scheduling for multiprocessor systems. First, we propose the Bounded-Delay Multipartition (BDM), a new interface specification model that allows the designer to balance resource usage versus flexibility in selecting the virtual platform parameters. Second, we explore the schedulability region of a real-time application on top of a generic virtual platform, and derive the interface parameter. Finally, we propose Fluid Best-Fit, an algorithm that takes advantage of the extra degree of flexibility provided by the BDM to compute the virtual platform parameters and allocate it on the physical platform. The performance of the algorithm is evaluated by simulations

    A framework for hierarchical scheduling on multiprocessors: from application requirements to run-time allocation

    Get PDF
    Hierarchical scheduling is a promising methodology for designing and deploying real-time applications, since it enables component-based design and analysis, and supports temporal isolation among competing applications. In hierarchical scheduling an application is described by means of a temporal interface. The designer faces the problem of how to derive the interface parameters so to make the application schedulable, at the same time minimizing the waste of computational resources. The problem is particularly relevant in multiprocessor systems, where it is not clear yet how the interface parameters influence the schedulability of the application and allocation on the physical platform. In this paper we present three novel contributions to hierarchical scheduling for multiprocessor systems. First, we propose the Bounded-Delay Multipartition (BDM), a new interface specification model that allows the designer to balance resource usage versus flexibility in selecting the virtual platform parameters. Second, we explore the schedulability region of a real-time application on top of a generic virtual platform, and derive the interface parameter. Finally, we propose Fluid Best-Fit, an algorithm that takes advantage of the extra degree of flexibility provided by the BDM to compute the virtual platform parameters and allocate it on the physical platform. The performance of the algorithm is evaluated by simulations

    Model-based estimation and control methods for batch cooling crystallizers

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    Multi-resource management in embedded real-time systems

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis

    Optimization of Discrete-parameter Multiprocessor Systems using a Novel Ergodic Interpolation Technique

    Full text link
    Modern multi-core systems have a large number of design parameters, most of which are discrete-valued, and this number is likely to keep increasing as chip complexity rises. Further, the accurate evaluation of a potential design choice is computationally expensive because it requires detailed cycle-accurate system simulation. If the discrete parameter space can be embedded into a larger continuous parameter space, then continuous space techniques can, in principle, be applied to the system optimization problem. Such continuous space techniques often scale well with the number of parameters. We propose a novel technique for embedding the discrete parameter space into an extended continuous space so that continuous space techniques can be applied to the embedded problem using cycle accurate simulation for evaluating the objective function. This embedding is implemented using simulation-based ergodic interpolation, which, unlike spatial interpolation, produces the interpolated value within a single simulation run irrespective of the number of parameters. We have implemented this interpolation scheme in a cycle-based system simulator. In a characterization study, we observe that the interpolated performance curves are continuous, piece-wise smooth, and have low statistical error. We use the ergodic interpolation-based approach to solve a large multi-core design optimization problem with 31 design parameters. Our results indicate that continuous space optimization using ergodic interpolation-based embedding can be a viable approach for large multi-core design optimization problems.Comment: A short version of this paper will be published in the proceedings of IEEE MASCOTS 2015 conferenc

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho
    corecore