9,609 research outputs found

    Metamorphic Domain-Specific Languages: A Journey Into the Shapes of a Language

    Get PDF
    External or internal domain-specific languages (DSLs) or (fluent) APIs? Whoever you are -- a developer or a user of a DSL -- you usually have to choose your side; you should not! What about metamorphic DSLs that change their shape according to your needs? We report on our 4-years journey of providing the "right" support (in the domain of feature modeling), leading us to develop an external DSL, different shapes of an internal API, and maintain all these languages. A key insight is that there is no one-size-fits-all solution or no clear superiority of a solution compared to another. On the contrary, we found that it does make sense to continue the maintenance of an external and internal DSL. The vision that we foresee for the future of software languages is their ability to be self-adaptable to the most appropriate shape (including the corresponding integrated development environment) according to a particular usage or task. We call metamorphic DSL such a language, able to change from one shape to another shape

    Towards Python-based Domain-specific Languages for Self-reconfigurable Modular Robotics Research

    Full text link
    This paper explores the role of operating system and high-level languages in the development of software and domain-specific languages (DSLs) for self-reconfigurable robotics. We review some of the current trends in self-reconfigurable robotics and describe the development of a software system for ATRON II which utilizes Linux and Python to significantly improve software abstraction and portability while providing some basic features which could prove useful when using Python, either stand-alone or via a DSL, on a self-reconfigurable robot system. These features include transparent socket communication, module identification, easy software transfer and reliable module-to-module communication. The end result is a software platform for modular robots that where appropriate builds on existing work in operating systems, virtual machines, middleware and high-level languages.Comment: Presented at DSLRob 2011 (arXiv:1212.3308

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations
    • …
    corecore