20,633 research outputs found

    Towards a Base UML Profile for Architecture Description

    Get PDF
    This paper discusses a base UML profile for architecture description as supported by existing Architecture Description Languages (ADLs). The profile may be extended so as to enable architecture modeling both as expressed in conventional ADLs and according to existing runtime infrastructures (e.g., system based on middleware architectures).

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Health Care Cost Containment and Coverage Expansion

    Get PDF
    Examines the relationship between expanding insurance coverage and controlling medical costs. Analyzes combinations of cost containment options and coverage expansion models for their compatibility and implications for the feasibility of proposed reforms

    Using a Model-driven Approach in Building a Provenance Framework for Tracking Policy-making Processes in Smart Cities

    Full text link
    The significance of provenance in various settings has emphasised its potential in the policy-making process for analytics in Smart Cities. At present, there exists no framework that can capture the provenance in a policy-making setting. This research therefore aims at defining a novel framework, namely, the Policy Cycle Provenance (PCP) Framework, to capture the provenance of the policy-making process. However, it is not straightforward to design the provenance framework due to a number of associated policy design challenges. The design challenges revealed the need for an adaptive system for tracking policies therefore a model-driven approach has been considered in designing the PCP framework. Also, suitability of a networking approach is proposed for designing workflows for tracking the policy-making process.Comment: 15 pages, 5 figures, 2 tables, Proc of the 21st International Database Engineering & Applications Symposium (IDEAS 2017

    Interacting Components

    Get PDF
    SystemCSP is a graphical modeling language based on both CSP and concepts of component-based software development. The component framework of SystemCSP enables specification of both interaction scenarios and relative execution ordering among components. Specification and implementation of interaction among participating components is formalized via the notion of interaction contract. The used approach enables incremental design of execution diagrams by adding restrictions in different interaction diagrams throughout the process of system design. In this way all different diagrams are related into a single formally verifiable system. The concept of reusable formally verifiable interaction contracts is illustrated by designing set of design patterns for typical fault tolerance interaction scenarios

    Treo: Textual Syntax for Reo Connectors

    Get PDF
    Reo is an interaction-centric model of concurrency for compositional specification of communication and coordination protocols. Formal verification tools exist to ensure correctness and compliance of protocols specified in Reo, which can readily be (re)used in different applications, or composed into more complex protocols. Recent benchmarks show that compiling such high-level Reo specifications produces executable code that can compete with or even beat the performance of hand-crafted programs written in languages such as C or Java using conventional concurrency constructs. The original declarative graphical syntax of Reo does not support intuitive constructs for parameter passing, iteration, recursion, or conditional specification. This shortcoming hinders Reo's uptake in large-scale practical applications. Although a number of Reo-inspired syntax alternatives have appeared in the past, none of them follows the primary design principles of Reo: a) declarative specification; b) all channel types and their sorts are user-defined; and c) channels compose via shared nodes. In this paper, we offer a textual syntax for Reo that respects these principles and supports flexible parameter passing, iteration, recursion, and conditional specification. In on-going work, we use this textual syntax to compile Reo into target languages such as Java, Promela, and Maude.Comment: In Proceedings MeTRiD 2018, arXiv:1806.0933

    Architecture Diagrams: A Graphical Language for Architecture Style Specification

    Get PDF
    Architecture styles characterise families of architectures sharing common characteristics. We have recently proposed configuration logics for architecture style specification. In this paper, we study a graphical notation to enhance readability and easiness of expression. We study simple architecture diagrams and a more expressive extension, interval architecture diagrams. For each type of diagrams, we present its semantics, a set of necessary and sufficient consistency conditions and a method that allows to characterise compositionally the specified architectures. We provide several examples illustrating the application of the results. We also present a polynomial-time algorithm for checking that a given architecture conforms to the architecture style specified by a diagram.Comment: In Proceedings ICE 2016, arXiv:1608.0313
    • 

    corecore