24,979 research outputs found

    Towards a service-oriented e-infrastructure for multidisciplinary environmental research

    Get PDF
    Research e-infrastructures are considered to have generic and thematic parts. The generic part provids high-speed networks, grid (large-scale distributed computing) and database systems (digital repositories and data transfer systems) applicable to all research commnities irrespective of discipline. Thematic parts are specific deployments of e-infrastructures to support diverse virtual research communities. The needs of a virtual community of multidisciplinary envronmental researchers are yet to be investigated. We envisage and argue for an e-infrastructure that will enable environmental researchers to develop environmental models and software entirely out of existing components through loose coupling of diverse digital resources based on the service-oriented achitecture. We discuss four specific aspects for consideration for a future e-infrastructure: 1) provision of digital resources (data, models & tools) as web services, 2) dealing with stateless and non-transactional nature of web services using workflow management systems, 3) enabling web servce discovery, composition and orchestration through semantic registries, and 4) creating synergy with existing grid infrastructures

    Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Full text link
    Shelf and coastal sea processes extend from the atmosphere through the water column and into the sea bed. These processes are driven by physical, chemical, and biological interactions at local scales, and they are influenced by transport and cross strong spatial gradients. The linkages between domains and many different processes are not adequately described in current model systems. Their limited integration level in part reflects lacking modularity and flexibility; this shortcoming hinders the exchange of data and model components and has historically imposed supremacy of specific physical driver models. We here present the Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de), a novel domain and process coupling system tailored---but not limited--- to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the existing coupling technology Earth System Modeling Framework and on the Framework for Aquatic Biogeochemical Models, thereby creating a unique level of modularity in both domain and process coupling; the new framework adds rich metadata, flexible scheduling, configurations that allow several tens of models to be coupled, and tested setups for coastal coupled applications. That way, MOSSCO addresses the technology needs of a growing marine coastal Earth System community that encompasses very different disciplines, numerical tools, and research questions.Comment: 30 pages, 6 figures, submitted to Geoscientific Model Development Discussion

    Simplifying the Development, Use and Sustainability of HPC Software

    Full text link
    Developing software to undertake complex, compute-intensive scientific processes requires a challenging combination of both specialist domain knowledge and software development skills to convert this knowledge into efficient code. As computational platforms become increasingly heterogeneous and newer types of platform such as Infrastructure-as-a-Service (IaaS) cloud computing become more widely accepted for HPC computations, scientists require more support from computer scientists and resource providers to develop efficient code and make optimal use of the resources available to them. As part of the libhpc stage 1 and 2 projects we are developing a framework to provide a richer means of job specification and efficient execution of complex scientific software on heterogeneous infrastructure. The use of such frameworks has implications for the sustainability of scientific software. In this paper we set out our developing understanding of these challenges based on work carried out in the libhpc project.Comment: 4 page position paper, submission to WSSSPE13 worksho

    Towards a foundation for holistic power system validation and testing

    Get PDF
    Renewable energy sources and further electrificationof energy consumption are key enablers for decreasing green-house gas emissions, but also introduce increased complexitywithin the electric power system. The increased availability ofautomation, information and communication technology, andintelligent solutions for system operation have transformed thepower system into a smart grid. In order to support thedevelopment process of smart grid solutions on the system level,testing has to be done in a holistic manner, covering the multi-domain aspect of such complex systems. This paper introducesthe concept of holistic power system testing and discuss first stepstowards a corresponding methodology that is being developed inthe European ERIGrid research infrastructure project.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA
    corecore