96,717 research outputs found

    Cloud Ready Applications Composed via HTN Planning

    Get PDF
    Modern software applications are increasingly deployed and distributed on infrastructures in the Cloud, and then offered as a service. Before the deployment process happens, these applications are being manually - or with some predefined scripts - composed from various smaller interdependent components. With the increase in demand for, and complexity of applications, the composition process becomes an arduous task often associated with errors and a suboptimal use of computer resources. To alleviate such a process, we introduce an approach that uses planning to automatically and dynamically compose applications ready for Cloud deployment. The industry may benefit from using automated planning in terms of support for product variability, sophisticated search in large spaces, fault tolerance, near-optimal deployment plans, etc. Our approach is based on Hierarchical Task Network (HTN) planning as it supports rich domain knowledge, component modularity, hierarchical representation of causality, and speed of computation. We describe a deployment using a formal component model for the Cloud, and we propose a way to define and solve an HTN planning problem from the deployment one. We employ an existing HTN planner to experimentally evaluate the feasibility of our approach

    Service broker based on cloud service description language

    Get PDF

    Applying constraint solving to the management of distributed applications

    Get PDF
    Submitted to DOA08We present our approach for deploying and managing distributed component-based applications. A Desired State Description (DSD), written in a high-level declarative language, specifies requirements for a distributed application. Our infrastructure accepts a DSD as input, and from it automatically configures and deploys the distributed application. Subsequent violations of the original requirements are detected and, where possible, automatically rectified by reconfiguration and redeployment of the necessary application components. A constraint solving tool is used to plan deployments that meet the application requirements.Postprin

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology
    • …
    corecore