131 research outputs found

    Modeling and parametric optimization of 3D tendon-sheath actuator system for upper limb soft exosuit

    Full text link
    This paper presents an analysis of parametric characterization of a motor driven tendon-sheath actuator system for use in upper limb augmentation for applications such as rehabilitation, therapy, and industrial automation. The double tendon sheath system, which uses two sets of cables (agonist and antagonist side) guided through a sheath, is considered to produce smooth and natural-looking movements of the arm. The exoskeleton is equipped with a single motor capable of controlling both the flexion and extension motions. One of the key challenges in the implementation of a double tendon sheath system is the possibility of slack in the tendon, which can impact the overall performance of the system. To address this issue, a robust mathematical model is developed and a comprehensive parametric study is carried out to determine the most effective strategies for overcoming the problem of slack and improving the transmission. The study suggests that incorporating a series spring into the system's tendon leads to a universally applicable design, eliminating the need for individual customization. The results also show that the slack in the tendon can be effectively controlled by changing the pretension, spring constant, and size and geometry of spool mounted on the axle of motor

    Computational Modeling and Experimental Characterization of Pneumatically Driven Actuators for the Development of a Soft Robotic Arm

    Get PDF
    abstract: Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Design of a pneumatic muscle based continuum robot with embedded tendons

    Get PDF
    © 1996-2012 IEEE. Continuum robots have attracted increasing focus in recent years due to their intrinsic compliance that allows for dexterous and safe movements. However, the inherent compliance in such systems reduces the structural stiffness, and therefore leads to the issue of reduced positioning accuracy. This paper presents the design of a continuum robot employing tendon embedded pneumatic muscles. The pneumatic muscles are used to achieve large-scale movements for preliminary positioning, while the tendons are used for fine adjustment of position. Such hybrid actuation offers the potential to improve the accuracy of the robotic system, while maintaining large displacement capabilities. A three-dimensional dynamic model of the robot is presented using a mass-damper-spring-based network, in which elastic deformation, actuating forces, and external forces are taken into account. The design and dynamic model of the robot are then validated experimentally with the help of an electromagnetic tracking system

    Design of an Anthropomorphic Robotic Hand for Space Operations

    Get PDF
    Robotic end-effectors provide the link between machines and the environment. The evolution of end-effector design has traded off between simplistic single-taskers and highly complex multi-function grippers. For future space operations, launch payload weight and the wide range of desired tasks necessitate a highly dexterous design with strength and manipulation capabilities matching those of the suited astronaut using EVA tools. The human hand provides the ideal parallel for a dexterous end-effector design. This thesis discusses efforts to design an anthropomorphic robotic hand, focusing on the detailed design, fabrication, and testing of an individual modular finger with considerations into overall hand configuration. The research first aims to define requirements for anthropomorphism and compare the geometry and motion of the design to that of the human hand. Active and passive ranges of motion are studied along with coupled joint behavior and grasp types. The second objective is to study the benefits and drawbacks of an active versus passive actuation systems. Tradeoffs between controllability and packaging of actuator assemblies are considered. Finally, a kinematic model is developed to predict tendon tensions and tip forces in different configurations. The esults show that the measured forces are consistent with the predictive model. In addition, the coupled joint motion shows similar behavior to that of the human hand

    Embodiment design of soft continuum robots

    Get PDF
    This article presents the results of a multidisciplinary project where mechatronic engineers worked alongside biologists to develop a soft robotic arm that captures key features of octopus anatomy and neurophysiology. The concept of embodiment (the dynamic coupling between sensory-motor control, anatomy, materials and environment that allows for the animal to achieve adaptive behaviours) is used as a starting point for the design process but tempered by current engineering technologies and approaches. In this article, the embodied design requirements are first discussed from a robotic viewpoint by taking into account real-life engineering limitations; then, the motor control schemes inspired by octopus nervous system are investigated. Finally, the mechanical and control design of a prototype is presented that appropriately blends bio-inspiration and engineering limitations. Simulated and experimental results show that the developed continuum robotic arm is able to reproduce octopus-like motions for bending, reaching and grasping

    Towards a more robust non-rigid robotic joint

    Get PDF
    The following paper presents an improved, low cost, non-rigid joint that can be used in both robotic manipulators and leg-based traction robotic systems. This joint is an improvement over the previous one presented by the same authors because it is more robust. The design iterations are presented and the final system has been modeled including some nonlinear blocks. A control architecture is proposed that allows compliant control to be used under adverse conditions or in uncontrolled environments. The presented joint is a cost-effective solution that can be used when normal rigid joints are not suitable.info:eu-repo/semantics/publishedVersio

    Monolithic self-supportive bi-directional bending pneumatic bellows catheter

    Get PDF
    The minimally invasive surgery has proven to be advantageous over conventional open surgery in terms of reduction in recovery time, patient trauma, and overall cost of treatment. To perform a minimally invasive procedure, preliminary insertion of a flexible tube or catheter is crucial without sacrificing its ability to manoeuvre. Nevertheless, despite the vast amount of research reported on catheters, the ability to implement active catheters in the minimally invasive application is still limited. To date, active catheters are made of rigid structures constricted to the use of wires or on-board power supplies for actuation, which increases the risk of damaging the internal organs and tissues. To address this issue, an active catheter made of soft, flexible and biocompatible structure, driven via nonelectric stimulus is of utmost importance. This thesis presents the development of a novel monolithic self-supportive bi-directional bending pneumatic bellows catheter using a sacrificial molding technique. As a proof of concept, in order to understand the effects of structural parameters on the bending performance of a bellows-structured actuator, a single channel circular bellows pneumatic actuator was designed. The finite element analysis was performed in order to analyze the unidirectional bending performance, while the most optimal model was fabricated for experimental validation. Moreover, to attain biocompatibility and bidirectional bending, the novel monolithic polydimethylsiloxane (PDMS)-based dual-channel square bellows pneumatic actuator was proposed. The actuator was designed with an overall cross-sectional area of 5 x 5 mm2, while the input sequence and the number of bellows were characterized to identify their effects on the bending performance. A novel sacrificial molding technique was adopted for developing the monolithic-structured actuator, which enabled simple fabrication for complex designs. The experimental validation revealed that the actuator model with a size of5 x 5 x 68.4 mm3 i.e. having the highest number of bellows, attained optimal bi-directional bending with maximum angles of -65° and 75°, and force of 0.166 and 0.221 N under left and right channel actuation, respectively, at 100 kPa pressure. The bending performance characterization and thermal insusceptibility achieved by the developed pneumatic catheter presents a promising implementation of flexibility and thermal stability for various biomedical applications, such as dialysis and cardiac catheterization

    DESIGN, DEVELOPMENT, AND EVALUATION OF A MRI-GUIDED NEUROSURGICAL INTRACRANIAL ROBOT

    Get PDF
    Brain tumors are among the most feared complications of cancer. Their treatment is challenging because of the lack of good imaging modality and the inability to remove the complete tumor. To overcome this limitation, we propose to develop a Magnetic Resonance Imaging (MRI)-compatible neurosurgical robot. The robot can be operated under continuous MRI, and the Magnetic Resonance (MR) images can be used to supplement physicians' visual capabilities, resulting in precise tumor removal. We have developed two prototypes of the Minimally Invasive Neurosurgical Intracranial Robot (MINIR) using MRI compatible materials and shape memory alloy (SMA) actuators. The major difference between the two robots is that one uses SMA wire actuators and the other uses SMA spring actuators combined with the tendon-sheath mechanism. Due to space limitation inside the robot body and the strong magnetic field in the MRI scanner, most sensors cannot be used inside the robot body. Hence, one possible approach is to rely on image feedback to control the motion of the robot. In this research, as a preliminary approach, we have relied on image feedback from a camera to control the motion of the robot. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used reliably to control the joint motion of the robots. A series of MRI compatibility tests were performed to evaluate the MRI compatibility of the robots and to assess the degradation in image quality. The experimental results demonstrated that the robots are MRI compatible and created no significant image distortion in the MR images during actuation. The accomplishments presented in this dissertation represent a significant development of using SMA actuators to actuate MRI-compatible robots. It is anticipated that, in the future, continuous MR imaging would be used reliably to control the motion of the robot. It is aspired that the robot design and the control methods of SMA actuators developed in this research can be utilized in practical applications
    corecore