5,976 research outputs found

    Manipulator technology for the space shuttle

    Get PDF
    A shuttle-attached manipulator is currently proposed as the payload-handling device for the space shuttle. Basic requirements for the manipulator involve length, force, compliance, and control. Approaches for studying control methods are presented and simulation methods are discussed. Basic details about the two earthbased manipulators selected for simulation experiments are related to the test methods. Preliminary data from one test are shown as an example of the direction of the testing. A computer-generated simulation is explained, and the relationship of the three simulations to the design problems is discussed

    A spatial impedance controller for robotic manipulation

    Get PDF
    Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the fact that it is difficult to select suitable impedances given tasks. A spatial impedance controller is presented that simplifies impedance selection. Impedance is characterized using ¿spatially affine¿ families of compliance and damping, which are characterized by nonspatial and spatial parameters. Nonspatial parameters are selected independently of configuration of the object with which the robot must interact. Spatial parameters depend on object configurations, but transform in an intuitive, well-defined way. Control laws corresponding to these compliance and damping families are derived assuming a commonly used robot model. While the compliance control law was implemented in simulation and on a real robot, this paper emphasizes the underlying theor

    Problems and research issues associated with the hybrid control of force and displacement

    Get PDF
    The hybrid control of force and position is basic to the science of robotics but is only poorly understood. Before much progress can be made in robotics, this problem needs to be solved in a robust manner. However, the use of hybrid control implies the existence of a model of the environment, not an exact model (as the function of hybrid control is to accommodate these errors), but a model appropriate for planning and reasoning. The monitored forces in position control are interpreted in terms of a model of the task as are the monitored displacements in force control. The reaction forces of the task of writing are far different from those of hammering. The programming of actions in such a modeled world becomes more complicated and systems of task level programming need to be developed. Sensor based robotics, of which force sensing is the most basic, implies an entirely new level of technology. Indeed, robot force sensors, no matter how compliant they may be, must be protected from accidental collisions. This implies other sensors to monitor task execution and again the use of a world model. This new level of technology is the task level, in which task actions are specified, not the actions of individual sensors and manipulators

    Experimental investigations of the effects of cutting angle on chattering of a flexible manipulator

    Get PDF
    When a machine tool is mounted at the tip of a robotic manipulator, the manipulator becomes more flexible (the natural frequencies are lowered). Moreover, for a given flexible manipulator, its compliance will be different depending on feedback gains, configurations, and direction of interest. Here, the compliance of a manipulator is derived analytically, and its magnitude is represented as a compliance ellipsoid. Then, using a two-link flexible manipulator with an abrasive cut off saw, the experimental investigation shows that the chattering varies with the saw cutting angle due to different compliance. The main work is devoted to finding a desirable cutting angle which reduces the chattering

    Human factors in space telepresence

    Get PDF
    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing

    An alternative control structure for telerobotics

    Get PDF
    A new teletobotic control concept which couples human supervisory commands with computer reasoning is presented. The control system is responsive and accomplishes an operator's commands while providing obstacle avoidance and stable controlled interactions with the environment in the presence of communication time delays. This provides a system which not only assists the operator in accomplishing tasks but modifies inappropriate operator commands which can result in safety hazards and/or equipment damage

    A shared position/force control methodology for teleoperation

    Get PDF
    A flexible and computationally efficient shared position/force control concept and its implementation in the Robot Control C Library (RCCL) are presented form the point of teleoperation. This methodology enables certain degrees of freedom to be position-controlled through real time manual inputs and the remaining degrees of freedom to be force-controlled by computer. Functionally, it is a hybrid control scheme in that certain degrees of freedom are designated to be under position control, and the remaining degrees of freedom to be under force control. However, the methodology is also a shared control scheme because some degrees of freedom can be put under manual control and the other degrees of freedom put under computer control. Unlike other hybrid control schemes, which process position and force commands independently, this scheme provides a force control loop built on top of a position control inner loop. This feature minimizes the computational burden and increases disturbance rejection. A simple implementation is achieved partly because the joint control servos that are part of most robots can be used to provide the position control inner loop. Along with this control scheme, several menus were implemented for the convenience of the user. The implemented control scheme was successfully demonstrated for the tasks of hinged-panel opening and peg-in-hole insertion

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed
    corecore