25 research outputs found

    Design and computational aspects of compliant tensegrity robots

    Get PDF

    On the Development of an Automated Design Procedure to Design Optimal Robots

    Get PDF
    The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts

    Robot manipulator skill learning and generalising through teleoperation

    Get PDF
    Robot manipulators have been widely used for simple repetitive, and accurate tasks in industrial plants, such as pick and place, assembly and welding etc., but it is still hard to deploy in human-centred environments for dexterous manipulation tasks, such as medical examination and robot-assisted healthcare. These tasks are not only related to motion planning and control but also to the compliant interaction behaviour of robots, e.g. motion control, force regulation and impedance adaptation simultaneously under dynamic and unknown environments. Recently, with the development of collaborative robotics (cobots) and machine learning, robot skill learning and generalising have attained increasing attention from robotics, machine learning and neuroscience communities. Nevertheless, learning complex and compliant manipulation skills, such as manipulating deformable objects, scanning the human body and folding clothes, is still challenging for robots. On the other hand, teleoperation, also namely remote operation or telerobotics, has been an old research area since 1950, and there have been a number of applications such as space exploration, telemedicine, marine vehicles and emergency response etc. One of its advantages is to combine the precise control of robots with human intelligence to perform dexterous and safety-critical tasks from a distance. In addition, telepresence allows remote operators could feel the actual interaction between the robot and the environment, including the vision, sound and haptic feedback etc. Especially under the development of various augmented reality (AR), virtual reality (VR) and wearable devices, intuitive and immersive teleoperation have received increasing attention from robotics and computer science communities. Thus, various human-robot collaboration (HRC) interfaces based on the above technologies were developed to integrate robot control and telemanipulation by human operators for robot skills learning from human beings. In this context, robot skill learning could benefit teleoperation by automating repetitive and tedious tasks, and teleoperation demonstration and interaction by human teachers also allow the robot to learn progressively and interactively. Therefore, in this dissertation, we study human-robot skill transfer and generalising through intuitive teleoperation interfaces for contact-rich manipulation tasks, including medical examination, manipulating deformable objects, grasping soft objects and composite layup in manufacturing. The introduction, motivation and objectives of this thesis are introduced in Chapter 1. In Chapter 2, a literature review on manipulation skills acquisition through teleoperation is carried out, and the motivation and objectives of this thesis are discussed subsequently. Overall, the main contents of this thesis have three parts: Part 1 (Chapter 3) introduces the development and controller design of teleoperation systems with multimodal feedback, which is the foundation of this project for robot learning from human demonstration and interaction. In Part 2 (Chapters 4, 5, 6 and 7), we studied primitive skill library theory, behaviour tree-based modular method, and perception-enhanced method to improve the generalisation capability of learning from the human demonstrations. And several applications were employed to evaluate the effectiveness of these methods.In Part 3 (Chapter 8), we studied the deep multimodal neural networks to encode the manipulation skill, especially the multimodal perception information. This part conducted physical experiments on robot-assisted ultrasound scanning applications.Chapter 9 summarises the contributions and potential directions of this thesis. Keywords: Learning from demonstration; Teleoperation; Multimodal interface; Human-in-the-loop; Compliant control; Human-robot interaction; Robot-assisted sonography

    Design of a robotic arm for laboratory simulations of spacecraft proximity navigation and docking

    Get PDF
    The increasing number of human objects in space has laid the foundation of a novel class of orbital missions for servicing and maintenance. The main goal of this thesis is the development, building and testing of a robotic manipulator for the simulation of orbital maneuvers, with particular attention to Active Debris Removal (ADR) and On-Orbit Servicing (OOS). There are currently very few ways to reproduce microgravity in a non-orbital environment: among the main techniques, it is worth mentioning parabolic flights, pool simulations and robotic facilities. Parabolic flights allow to reproduce orbital conditions quite faithfully, but simulation conditions are very constraining. Pool simulations, on the other hand, have fewer constrictions in terms of cost, but the drag induced by the water negatively affects the simulated microgravity. Robotic facilities, finally, permit to reproduce indirectly (that is, with an appropriate control system) the physics of microgravity. State of the art on 3D robotic simulations is nowadays limited to industrial robots facilities, that bear conspicuous costs, both in terms of hardware and maintenance. This project proposes a viable alternative to these costly structures. Through dedicated algorithms, the system is able to compute in real time the consequences of these contacts in terms of trajectory modifications, which are then fed to the hardware in the loop (HIL) control system. Moreover, the governing software can be commanded to perform active maneuvers and relocations: as a consequence, the manipulator can be used as the testing bench not only for orbital servicing operations but also for attitude control systems, providing a faithful, real-time simulation of the zero-gravity behavior. Furthermore, with the aid of dynamic scaling laws, the potentialities of the facility can be exponentially increased: the simulation environment is not longer bounded to be as big as the robot workspace, but could be several orders of magnitude bigger, allowing for the reproduction of otherwise preposterous scenarios. The thesis describes the detailed mechanical design of the facility, corroborated by structural modeling, static and vibrational finite element verification. A strategy for the simulation of impedance-matched contacts is presented and an analytical control analysis defines the set of allowable inertial properties of the simulated entities. Focusing on the simulation scenarios, an innovative information theoretic approach for simultaneous localization and docking has been designed and applied for the first time to a 3D rendezvous scenario. Finally, in order to instrument the facility’s end effector with a consistent sensor suite, the design and manufacturing of an innovative Sun sensor is proposed

    Design of fixture elements from the aspect of fixture-workpiece inteface load capacity and compliance

    Get PDF
    U doktorskoj disertaciji je prikazana nova metodologija za projektovanje i optimizaciju konstrukcije elemenata pribora. Projektovani su i realizovani uređaji koji omogućavaju ispitivanje nosivosti i popustljivosti kontakta između elemenata pribora i radnog predmeta u statičkim i dinamičkim uslovima opterećenja. U istraživanjima je simuliran proces stezanja elementima sa specijalno projektovanim završetkom i praćena je nosivost i popustljivost spoja između elemenata pribora i radnog predmeta. Utvrđeno je da standardni elementi za stezanje sa ravnim čelom u odnosu na specijano projektovane elemente imaju značajno manju nosivost i popustljivost. Pozitivni efekti primene elemenata za stezanje sa specijalno projektovanim završetkom ogledaju se u povećanju pouzdanosti, tačnosti i produktivnosti mašinske obrade.Presented in this doctoral dissertation is a new methodology for the design and optimization of fixture elements. Special device is designed and manufactured to test load capacity and interface compliance between fixture elements and workpiece under static and dynamic loads during machining. The research process is simulated by specially designed clamping elements and monitored for load capacity and interface compliance between fixture elements and workpiece. It was found that the standard clamping elements with flat clamping surface have a significantly lower load capacity and interface compliance in comparison with the specially designed clamping elements. Application of the specially designed clamping elements results in increased reliability, accuracy and machining productivity

    ROBOTIC TECHNOLOGIES FOR MINIMIZING CREW MAINTENANCE REQUIREMENTS IN SPACE HABITATS

    Get PDF
    Gemstone Team ASTROThe International Space Station (ISS) is crewed continuously by astronauts conducting scientifc research in microgravity. However, their work is not limited to scientifc research alone; in fact, logistics, maintenance, and repair tasks on the ISS require more than 80% of available crew time, severely limiting opportunities for performing scientifc experiments and technological development. NASA is planning a new project known as Gateway (also referred to as the Lunar Orbital Platform-Gateway). This station will orbit the Moon and be uncrewed for 11 months per year. Astronauts will only be present in the outpost for a limited period of time and will not always be available for continuous repairs and maintenance, as is required for Gateway to operate. Therefore, robotic system(s) are necessary to regularly accomplish these tasks both in the absence and presence of astronauts. Throughout this project, Team ASTRO (Assessment of Space Technologies for Robotic Operations) explored the feasibility of integrating dexterous robotic systems in space habitat architectures to perform routine and contingency operational and maintenance tasks. Ultimately, this allows for astronauts, when present, to focus on exploration and scientifc discoveries. The team conducted this research through three approaches: Gateway component analog taskboard development and end e˙ector assessment, Cargo Transfer Bag (CTB) manipulation and logistics, and AprilTag situational awareness simulation development. Based on analyses and experimental results gained from this research, the team found that robotic systems are feasible alternatives for space habitat operation. Team ASTRO also determined that AprilTags can be used for optimization of the Gateway design to facilitate uncrewed operations and robotic servicing to improve crew productivity when present

    Solar dynamic power system development for Space Station Freedom

    Get PDF
    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program

    Open reWall: Survey-to-production workflow for building renovation

    Get PDF
    A reabilitação de espaços interiores, num contexto de personalização em série, requer uma mudança na forma como os sistemas construtivos são desenhados, construídos e reutilizados. Recorrendo a plataformas digitais para a participação os arquitetos, em colaboração com outros atores na indústria AEC, podem desenvolver e oferecer soluções personalizadas e desmontáveis a utilizadores genéricos. Esta investigação propõe o uso de sistemas de construção personalizada em série (CPS) para fornecer sistemas de divisórias desmontáveis fabricadas digitalmente usando metodologias do levantamento à produção ligadas a configuradores online, em que os utilizadores co-projetam soluções para a reabilitação de espaços interiores. A metodologia de investigação socorre-se de pesquisa e análise teórica para definir critérios e objetivos a serem explorados em resolução de problemas de projeto. A partir destas experiências são sintetizados princípios e uma metodologia para a conceção de sistemas CPS de sistemas de divisórias personalizáveis e desmontáveis para a reabilitação. A metodologia clarifica os papeis dos atores, passos, e arquitetura do sistema para implementar um sistema CPS do levantamento à produção. A investigação demonstra que a metodologia de levantamento proposta é utilizável por utilizadores especialistas e não-especialistas, com os últimos a apresentarem em média melhores resultados, e que estes levantamentos têm precisão suficiente para processos do desenho à produção. Também se demonstra que a metodologia do levantamento à produção, a gramática genérica, e os critérios são úteis para os arquitetos conceberem sistemas de divisórias desmontáveis e personalizáveis para sistemas CPS abertos.Building renovation of interior spaces, in the context of mass customization, requires a shift in how construction systems are designed, built, and reused. Leveraging digital frameworks for user participation, architects in collaboration with other stakeholders in the AEC industry may design anddeliver customized and disassemble-able solutions to generic end-users. The research proposes mass customization construction (MCC) systems can deliver cost-effective digitally fabricated and disassemble-able construction systems using survey-to-production workflows deployed in web configurators for end-users to co-design solutions in building renovation. The research methodology uses theoretical inquiry and analysis to define criteria and objectives to be explored in design problem solving. From these experiments generalizable principles and a lowkey workflow for the design of MCC systems of customizable and disassemble-able partition wall construction systems for open building renovation are synthetized. The workflow clarifies stakeholder roles, steps, and system architecture to implement an MCC system from survey to production. This investigation demonstrates the proposed survey workflow is usable by non-expert and expert instance-designers, with the former having on-average better results, and that these can survey spaces with sufficient precision for design-to-production workflows. It is also shown the survey-to-production workflow, the generic grammar, and criteria are useful for architects to design customizable and disassemble-able partition wall systems for open MCC systems

    DTT - Divertor Tokamak Test facility - Interim Design Report

    Get PDF
    The “Divertor Tokamak Test facility, DTT” is a milestone along the international program aimed at demonstrating – in the second half of this century – the feasibility of obtaining to commercial electricity from controlled thermonuclear fusion. DTT is a Tokamak conceived and designed in Italy with a broad international vision. The construction will be carried out in the ENEA Frascati site, mainly supported by national funds, complemented by EUROfusion and European incentive schemes for innovative investments. The project team includes more than 180 high-standard researchers from ENEA, CREATE, CNR, INFN, RFX and various universities. The volume, entitled DTT Interim Design Report (“Green Book” from the colour of the cover), briefly describes the status of the project, the planning of the design future activities and its organizational structure. The publication of the Green Book also provides an occasion for thorough discussions in the fusion community and a broad international collaboration on the DTT challenge

    Technology for large space systems: A bibliography with indexes (supplement 11)

    Get PDF
    This bibliography contains 539 abstracts of reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1984 and December 31, 1984. Abstracts are arranged in the following categories: systems; analysis and design techniques; structural concepts; structural and thermal analysis; structural dynamics and control; electronics; advanced materials; assembly concepts; propulsion; and miscellaneous. Subject, personal author, corporate source, contract number, report number, and accession number indexes are listed
    corecore