1,197 research outputs found

    VRSC 2021 Conference Proceedings

    Get PDF
    The biennial conference aims to catalyze ideas and innovation between academia, practice, NGOs and government agencies who work to address analysis, planning, valuation, design and management of visual resources. The aim of the 2021 Virtual Conference is to share ideas and discuss the issues associated with the assessment and protection of visual resources in an era of major landscape change - regionally, national and globally

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    Integrated Urban Sensing: A Geo-sensor Network for Public Health Monitoring and Beyond

    Get PDF
    Pervasive environmental monitoring implies a wide range of technical, but also socio-political challenges, and this applies especially to the sensitive context of the city. In this paper, we elucidate issues for bringing out pervasive urban sensor networks and associated concerns relating to fine-grained information provision. We present the Common Scents project, which is based on the Live Geography approach, and show how it can overcome these challenges. As opposed to hitherto sensing networks, which are mostly built up in monolithic and closed systems, the Common Scents approach aims to establish an open, standards based and modular infrastructure. This ensures interoperability, portability and flexibility, which are crucial prerequisites for pervasive urban sensing. The implementation – a real-time data integration and analysis system for air quality assessment – has been realised on top of the CitySense sensor network in the City of Cambridge, MA US together with the city’s Public Health Department responding to concrete needs of the city and its inhabitants. The second pilot using mobile sensors mounted on bicycles has been deployed in Copenhagen, Denmark. Preliminary results show highly fine-grained variability of pollutant dispersion in urban environments.Singapore-MIT Alliance. Center for Environmental Sensing and MonitoringSingapore-MIT Alliance for Research and Technology CenterEuropean Commission (FP7 GENESIS project)Bundesministerium für Wissenschaft und ForschungResearch Studio iSPAC

    Visual sequence-based place recognition for changing conditions and varied viewpoints

    Get PDF
    Correctly identifying previously-visited locations is essential for robotic place recognition and localisation. This thesis presents training-free solutions to vision-based place recognition under changing environmental conditions and camera viewpoints. Using vision as a primary sensor, the proposed approaches combine image segmentation and rescaling techniques over sequences of visual imagery to enable successful place recognition over a range of challenging environments where prior techniques have failed

    Data Collection and Machine Learning Methods for Automated Pedestrian Facility Detection and Mensuration

    Get PDF
    Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence data is vital to the success of efforts to improve pedestrian facility management, safety analysis, and road network planning. However, this kind of data is typically not available on a large scale due to the high labor and time costs that are the result of relying on manual data collection methods. Therefore, methods for automating this process using techniques such as machine learning are currently being explored by researchers. In our work, we mainly focus on machine learning methods for the detection of crosswalks and sidewalks from both aerial and street-view imagery. We test data from these two viewpoints individually and with an ensemble method that we refer to as our “dual-perspective prediction model”. In order to obtain this data, we developed a data collection pipeline that combines crowdsourced pedestrian facility location data with aerial and street-view imagery from Bing Maps. In addition to the Convolutional Neural Network used to perform pedestrian facility detection using this data, we also trained a segmentation network to measure the length and width of crosswalks from aerial images. In our tests with a dual-perspective image dataset that was heavily occluded in the aerial view but relatively clear in the street view, our dual-perspective prediction model was able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%, respectively (compared to using a single perspective model based on only aerial view images). In our tests with satellite imagery provided by the Mississippi Department of Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and 93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk mensuration, respectively. The final system that we developed packages all of our machine learning models into an easy-to-use system that enables users to process large batches of imagery or examine individual images in a directory using a graphical interface. Our data collection and filtering guidelines can also be used to guide future research in this area by establishing standards for data quality and labelling

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    Collective sensing: integrating geospatial technologies to understand urban systems : an overview

    Get PDF
    Cities are complex systems composed of numerous interacting components that evolve over multiple spatio-temporal scales. Consequently, no single data source is sufficient to satisfy the information needs required to map, monitor, model, and ultimately understand and manage our interaction within such urban systems. Remote sensing technology provides a key data source for mapping such environments, but is not sufficient for fully understanding them. In this article we provide a condensed urban perspective of critical geospatial technologies and techniques: (i) Remote Sensing; (ii) Geographic Information Systems; (iii) object-based image analysis; and (iv) sensor webs, and recommend a holistic integration of these technologies within the language of open geospatial consortium (OGC) standards in-order to more fully understand urban systems. We then discuss the potential of this integration and conclude that this extends the monitoring and mapping options beyond “hard infrastructure” by addressing “humans as sensors”, mobility and human-environment interactions, and future improvements to quality of life and of social infrastructures.(VLID)218440
    • …
    corecore