14,704 research outputs found

    Complexity management of H.264/AVC video compression.

    Get PDF
    The H. 264/AVC video coding standard offers significantly improved compression efficiency and flexibility compared to previous standards. However, the high computational complexity of H. 264/AVC is a problem for codecs running on low-power hand held devices and general purpose computers. This thesis presents new techniques to reduce, control and manage the computational complexity of an H. 264/AVC codec. A new complexity reduction algorithm for H. 264/AVC is developed. This algorithm predicts "skipped" macroblocks prior to motion estimation by estimating a Lagrange ratedistortion cost function. Complexity savings are achieved by not processing the macroblocks that are predicted as "skipped". The Lagrange multiplier is adaptively modelled as a function of the quantisation parameter and video sequence statistics. Simulation results show that this algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. The complexity reduction algorithm is further developed to achieve complexity-scalable control of the encoding process. The Lagrangian cost estimation is extended to incorporate computational complexity. A target level of complexity is maintained by using a feedback algorithm to update the Lagrange multiplier associated with complexity. Results indicate that scalable complexity control of the encoding process can be achieved whilst maintaining near optimal complexity-rate-distortion performance. A complexity management framework is proposed for maximising the perceptual quality of coded video in a real-time processing-power constrained environment. A real-time frame-level control algorithm and a per-frame complexity control algorithm are combined in order to manage the encoding process such that a high frame rate is maintained without significantly losing frame quality. Subjective evaluations show that the managed complexity approach results in higher perceptual quality compared to a reference encoder that drops frames in computationally constrained situations. These novel algorithms are likely to be useful in implementing real-time H. 264/AVC standard encoders in computationally constrained environments such as low-power mobile devices and general purpose computers

    Real-time complexity constrained encoding

    Get PDF
    Complex software appliances can be deployed on hardware with limited available computational resources. This computational boundary puts an additional constraint on software applications. This can be an issue for real-time applications with a fixed time constraint such as low delay video encoding. In the context of High Efficiency Video Coding (HEVC), a limited number of publications have focused on controlling the complexity of an HEVC video encoder. In this paper, a technique is proposed to control complexity by deciding between 2Nx2N merge mode and full encoding, at different Coding Unit (CU) depths. The technique is demonstrated in two encoders. The results demonstrate fast convergence to a given complexity threshold, and a limited loss in rate-distortion performance (on average 2.84% Bjontegaard delta rate for 40% complexity reduction)

    Low computational complexity variable block size (VBS) partitioning for motion estimation using the Walsh Hadamard transform (WHT)

    Get PDF
    Variable Block Size (VBS) based motion estimation has been adapted in state of the art video coding, such as H.264/AVC, VC-1. However, a low complexity H.264/AVC encoder cannot take advantage of VBS due to its power consumption requirements. In this paper, we present a VBS partition algorithm based on a binary motion edge map without either initial motion estimation or Rate-Distortion (R-D) optimization for selecting modes. The proposed algorithm uses the Walsh Hadamard Transform (WHT) to create a binary edge map, which provides a computational complexity cost effectiveness compared to other light segmentation methods typically used to detect the required region

    Efficient hardware implementations of low bit depth motion estimation algorithms

    Get PDF
    In this paper, we present efficient hardware implementation of multiplication free one-bit transform (MF1BT) based and constraint one-bit transform (C-1BT) based motion estimation (ME) algorithms, in order to provide low bit-depth representation based full search block ME hardware for real-time video encoding. We used a source pixel based linear array (SPBLA) hardware architecture for low bit depth ME for the first time in the literature. The proposed SPBLA based implementation results in a genuine data flow scheme which significantly reduces the number of data reads from the current block memory, which in turn reduces the power consumption by at least 50% compared to conventional 1BT based ME hardware architecture presented in the literature. Because of the binary nature of low bit-depth ME algorithms, their hardware architectures are more efficient than existing 8 bits/pixel representation based ME architectures

    A content-aware quantisation mechanism for transform domain distributed video coding

    Get PDF
    The discrete cosine transform (DCT) is widely applied in modern codecs to remove spatial redundancies, with the resulting DCT coefficients being quantised to achieve compression as well as bit-rate control. In distributed video coding (DVC) architectures like DISCOVER, DCT coefficient quantisation is traditionally performed using predetermined quantisation matrices (QM), which means the compression is heavily dependent on the sequence being coded. This makes bit-rate control challenging, with the situation exacerbated in the coding of high resolution sequences due to QM scarcity and the non-uniform bit-rate gaps between them. This paper introduces a novel content-aware quantisation (CAQ) mechanism to overcome the limitations of existing quantisation methods in transform domain DVC. CAQ creates a frame-specific QM to reduce quantisation errors by analysing the distribution of DCT coefficients. In contrast to the predetermined QM that is applicable to only 4x4 block sizes, CAQ produces QM for larger block sizes to enhance compression at higher resolutions. This provides superior bit-rate control and better output quality by seeking to fully exploit the available bandwidth, which is especially beneficial in bandwidth constrained scenarios. In addition, CAQ generates superior perceptual results by innovatively applying different weightings to the DCT coefficients to reflect the human visual system. Experimental results corroborate that CAQ both quantitatively and qualitatively provides enhanced output quality in bandwidth limited scenarios, by consistently utilising over 90% of available bandwidth

    Increasing Compression Ratio of Low Complexity Compressive Sensing Video Encoder with Application-Aware Configurable Mechanism

    Full text link
    With the development of embedded video acquisition nodes and wireless video surveillance systems, traditional video coding methods could not meet the needs of less computing complexity any more, as well as the urgent power consumption. So, a low-complexity compressive sensing video encoder framework with application-aware configurable mechanism is proposed in this paper, where novel encoding methods are exploited based on the practical purposes of the real applications to reduce the coding complexity effectively and improve the compression ratio (CR). Moreover, the group of processing (GOP) size and the measurement matrix size can be configured on the encoder side according to the post-analysis requirements of an application example of object tracking to increase the CR of encoder as best as possible. Simulations show the proposed framework of encoder could achieve 60X of CR when the tracking successful rate (SR) is still keeping above 90%.Comment: 5 pages with 6figures and 1 table,conferenc

    Band Codes for Energy-Efficient Network Coding with Application to P2P Mobile Streaming

    Get PDF
    A key problem in random network coding (NC) lies in the complexity and energy consumption associated with the packet decoding processes, which hinder its application in mobile environments. Controlling and hence limiting such factors has always been an important but elusive research goal, since the packet degree distribution, which is the main factor driving the complexity, is altered in a non-deterministic way by the random recombinations at the network nodes. In this paper we tackle this problem proposing Band Codes (BC), a novel class of network codes specifically designed to preserve the packet degree distribution during packet encoding, ecombination and decoding. BC are random codes over GF(2) that exhibit low decoding complexity, feature limited and controlled degree distribution by construction, and hence allow to effectively apply NC even in energy-constrained scenarios. In particular, in this paper we motivate and describe our new design and provide a thorough analysis of its performance. We provide numerical simulations of the performance of BC in order to validate the analysis and assess the overhead of BC with respect to a onventional NC scheme. Moreover, peer-to-peer media streaming experiments with a random-push protocol show that BC reduce the decoding complexity by a factor of two, to a point where NC-based mobile streaming to mobile devices becomes practically feasible.Comment: To be published in IEEE Transacions on Multimedi
    corecore