404 research outputs found

    Complexity results and algorithms for possibilistic influence diagrams

    Get PDF
    In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ. Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination algorithm that can be applied to both optimistic and pessimistic cases for solving PID

    Possibilistic decision theory: from theoretical foundations to influence diagrams methodology

    Get PDF
    Le domaine de prise de décision est un domaine multidisciplinaire en relation avec plusieurs disciplines telles que l'économie, la recherche opérationnelle, etc. La théorie de l'utilité espérée a été proposée pour modéliser et résoudre les problèmes de décision. Ces théories ont été mises en cause par plusieurs paradoxes (Allais, Ellsberg) qui ont montré les limites de son applicabilité. Par ailleurs, le cadre probabiliste utilisé dans ces théories s'avère non approprié dans certaines situations particulières (ignorance totale, incertitude qualitative). Pour pallier ces limites, plusieurs travaux ont été élaborés concernant l'utilisation des intégrales de Choquet et de Sugeno comme critères de décision d'une part et l'utilisation d'une théorie d'incertitude autre que la théorie des probabilités pour la modélisation de l'incertitude d'une autre part. Notre idée principale est de profiter de ces deux directions de recherche afin de développer, dans le cadre de la décision séquentielle, des modèles de décision qui se basent sur les intégrales de Choquet comme critères de décision et sur la théorie des possibilités pour la représentation de l'incertitude. Notre objectif est de développer des modèles graphiques décisionnels, qui représentent des modèles compacts et simples pour la prise de décision dans un contexte possibiliste. Nous nous intéressons en particulier aux arbres de décision et aux diagrammes d'influence possibilistes et à leurs algorithmes d'évaluation.The field of decision making is a multidisciplinary field in relation with several disciplines such as economics, operations research, etc. Theory of expected utility has been proposed to model and solve decision problems. These theories have been questioned by several paradoxes (Allais, Ellsberg) who have shown the limits of its applicability. Moreover, the probabilistic framework used in these theories is not appropriate in particular situations (total ignorance, qualitative uncertainty). To overcome these limitations, several studies have been developed basing on the use of Choquet and Sugeno integrals as decision criteria and a non classical theory to model uncertainty. Our main idea is to use these two lines of research to develop, within the framework of sequential decision making, decision models based on Choquet integrals as decision criteria and possibility theory to represent uncertainty. Our goal is to develop graphical decision models that represent compact models for decision making when uncertainty is represented using possibility theory. We are particularly interested by possibilistic decision trees and influence diagrams and their evaluation algorithms

    Order-of-Magnitude Influence Diagrams

    Get PDF
    In this paper, we develop a qualitative theory of influence diagrams that can be used to model and solve sequential decision making tasks when only qualitative (or imprecise) information is available. Our approach is based on an order-of-magnitude approximation of both probabilities and utilities and allows for specifying partially ordered preferences via sets of utility values. We also propose a dedicated variable elimination algorithm that can be applied for solving order-of-magnitude influence diagrams

    New Graphical Model for Computing Optimistic Decisions in Possibility Theory Framework

    Get PDF
    This paper first proposes a new graphical model for decision making under uncertainty based on min-based possibilistic networks. A decision problem under uncertainty is described by means of two distinct min-based possibilistic networks: the first one expresses agent's knowledge while the second one encodes agent's preferences representing a qualitative utility. We then propose an efficient algorithm for computing optimistic optimal decisions using our new model for representing possibilistic decision making under uncertainty. We show that the computation of optimal decisions comes down to compute a normalization degree of the junction tree associated with the graph resulting from the fusion of agent's beliefs and preferences. This paper also proposes an alternative way for computing optimal optimistic decisions. The idea is to transform the two possibilistic networks into two equivalent possibilistic logic knowledge bases, one representing agent's knowledge and the other represents agent's preferences. We show that computing an optimal optimistic decision comes down to compute the inconsistency degree of the union of the two possibilistic bases augmented with a given decision

    Structured Possibilistic Planning Using Decision Diagrams

    Get PDF
    National audienceQualitative Possibilistic Mixed-Observable MDPs (π-MOMDPs), generalizing π-MDPs and π-POMDPs, are well-suited models to planning under uncertainty with mixed-observability when transition, observation and reward functions are not precisely known and can be qualitatively described. Functions defining the model as well as intermediate calculations are valued in a finite possibilistic scale L, which induces a finite belief state space under partial observability contrary to its probabilistic counterpart. In this paper, we propose the first study of factored π-MOMDP models in order to solve large structured planning problems under qualitative uncertainty, or considered as qualitative approximations of probabilistic problems. Building upon the SPUDD algorithm for solving factored (probabilistic) MDPs, we conceived a symbolic algorithm named PPUDD for solving factored π-MOMDPs. Whereas SPUDD’s decision diagrams’ leaves may be as large as the state space since their values are real numbers aggregated through additions and multiplications, PPUDD’s ones always remain in the finite scale L via min and max operations only. Our experiments show that PPUDD’s computation time is much lower than SPUDD, Symbolic-HSVI and APPL for possibilistic and probabilistic versions of the same benchmarks under either total or mixed observability, while still providing high-quality policies

    Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities

    Get PDF
    International audienceThis paper proposes a qualitative approach to solve multi-criteria decision making problems under possibilistic uncertainty. De-pending on the decision maker attitude with respect to uncertainty (i.e. optimistic or pessimistic) and on her attitude with respect to criteria (i.e. conjunctive or disjunctive), four ex-ante and four ex-post decision rules are dened and investigated. In particular, their coherence w.r.t. the principle of monotonicity, that allows Dynamic Programming is studied

    Lexicographic refinements in possibilistic decision trees and finite-horizon Markov decision processes

    Get PDF
    Possibilistic decision theory has been proposed twenty years ago and has had several extensions since then. Even though ap-pealing for its ability to handle qualitative decision problems, possibilisticdecision theory suffers from an important drawback. Qualitative possibilistic utility criteria compare acts through min and max operators, which leads to a drowning effect. To over-come this lack of decision power of the theory, several refinements have been proposed. Lexicographic refinements are particularly appealing since they allow to benefit from the Expected Utility background, while remaining qualitative. This article aims at extend-ing lexicographic refinements to sequential decision problems i.e., to possibilistic decision trees and possibilistic Markov decision processes, when the horizon is finite. We present two criteria that refine qualitative possibilistic utilities and provide dynamic programming algorithms for calculating lexicographically optimal policies

    Possibilistic sequential decision making

    Get PDF
    International audienceWhen the information about uncertainty cannot be quantified in a simple, probabilistic way, the topic of possibilistic decision theory is often a natural one to consider. The development of possibilistic decision theory has lead to the proposition a series of possibilistic criteria, namely: optimistic and pessimistic possibilistic qualitative criteria [7], possibilistic likely dominance [2] and [9], binary possibilistic utility [11] and possibilistic Choquet integrals [24]. This paper focuses on sequential decision making in possibilistic decision trees. It proposes a theoretical study on the complexity of the problem of finding an optimal strategy depending on the monotonicity property of the optimization criteria – when the criterion is transitive, this property indeed allows a polytime solving of the problem by Dynamic Programming. We show that most possibilistic decision criteria, but possibilistic Choquet integrals, satisfy monotonicity and that the corresponding optimization problems can be solved in polynomial time by Dynamic Programming. Concerning the possibilistic likely dominance criteria which is quasi-transitive but not fully transitive, we propose an extended version of Dynamic Programming which remains polynomial in the size of the decision tree. We also show that for the particular case of possibilistic Choquet integrals, the problem of finding an optimal strategy is NP-hard. It can be solved by a Branch and Bound algorithm. Experiments show that even not necessarily optimal, the strategies built by Dynamic Programming are generally very good

    Decision Making under Uncertainty through Extending Influence Diagrams with Interval-valued Parameters

    Get PDF
    Influence Diagrams (IDs) are one of the most commonly used graphical and mathematical decision models for reasoning under uncertainty. In conventional IDs, both probabilities representing beliefs and utilities representing preferences of decision makers are precise point-valued parameters. However, it is usually difficult or even impossible to directly provide such parameters. In this paper, we extend conventional IDs to allow IDs with interval-valued parameters (IIDs), and develop a counterpart method of Copper’s evaluation method to evaluate IIDs. IIDs avoid the difficulties attached to the specification of precise parameters and provide the capability to model decision making processes in a situation that the precise parameters cannot be specified. The counterpart method to Copper’s evaluation method reduces the evaluation of IIDs into inference problems of IBNs. An algorithm based on the approximate inference of IBNs is proposed, extensive experiments are conducted. The experimental results indicate that the proposed algorithm can find the optimal strategies effectively in IIDs, and the interval-valued expected utilities obtained by proposed algorithm are contained in those obtained by exact evaluating algorithms
    • …
    corecore