41,615 research outputs found

    Complexity of Minimum Corridor Guarding Problems

    Full text link
    In this paper, the complexity of minimum corridor guarding problems is discussed. These problem can be described as: given a connected orthogo-nal arrangement of vertical and horizontal line segments and a guard with unlimited visibility along a line segment, find a tree or a closed tour with minimum total length along edges of the arrangement, such that if the guard runs on the tree or on the closed tour, all line segments are visited by the guard. These problems are proved to be NP-complete. Keywords: computational complexity, computational geometry, corridor guarding, NP-complet

    Most vital segment barriers

    Get PDF
    We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases

    The Complexity of Separating Points in the Plane

    Get PDF
    We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles
    • …
    corecore