5,926 research outputs found

    On the approximability of robust spanning tree problems

    Get PDF
    In this paper the minimum spanning tree problem with uncertain edge costs is discussed. In order to model the uncertainty a discrete scenario set is specified and a robust framework is adopted to choose a solution. The min-max, min-max regret and 2-stage min-max versions of the problem are discussed. The complexity and approximability of all these problems are explored. It is proved that the min-max and min-max regret versions with nonnegative edge costs are hard to approximate within O(log1ϵn)O(\log^{1-\epsilon} n) for any ϵ>0\epsilon>0 unless the problems in NP have quasi-polynomial time algorithms. Similarly, the 2-stage min-max problem cannot be approximated within O(logn)O(\log n) unless the problems in NP have quasi-polynomial time algorithms. In this paper randomized LP-based approximation algorithms with performance ratio of O(log2n)O(\log^2 n) for min-max and 2-stage min-max problems are also proposed

    A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

    Full text link
    This work deals with a class of problems under interval data uncertainty, namely interval robust-hard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-of-the-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems

    Making Robust Decisions in Discrete Optimization Problems as a Game against Nature

    Get PDF
    In this paper a discrete optimization problem under uncertainty is discussed. Solving such a problem can be seen as a game against nature. In order to choose a solution, the minmax and minmax regret criteria can be applied. In this paper an extension of the known minmax (regret) approach is proposed. It is shown how different types of uncertainty can be simultaneously taken into account. Some exact and approximation algorithms for choosing a best solution are constructed.Discrete optimization, minmax, minmax regret, game against nature
    corecore