452 research outputs found

    Complexity of the Guarded Two-Variable Fragment with Counting Quantifiers

    Full text link
    We show that the finite satisfiability problem for the guarded two-variable fragment with counting quantifiers is in EXPTIME. The method employed also yields a simple proof of a result recently obtained by Y. Kazakov, that the satisfiability problem for the guarded two-variable fragment with counting quantifiers is in EXPTIME.Comment: 20 pages, 3 figure

    On the uniform one-dimensional fragment

    Full text link
    The uniform one-dimensional fragment of first-order logic, U1, is a recently introduced formalism that extends two-variable logic in a natural way to contexts with relations of all arities. We survey properties of U1 and investigate its relationship to description logics designed to accommodate higher arity relations, with particular attention given to DLR_reg. We also define a description logic version of a variant of U1 and prove a range of new results concerning the expressivity of U1 and related logics

    One-dimensional fragment of first-order logic

    Full text link
    We introduce a novel decidable fragment of first-order logic. The fragment is one-dimensional in the sense that quantification is limited to applications of blocks of existential (universal) quantifiers such that at most one variable remains free in the quantified formula. The fragment is closed under Boolean operations, but additional restrictions (called uniformity conditions) apply to combinations of atomic formulae with two or more variables. We argue that the notions of one-dimensionality and uniformity together offer a novel perspective on the robust decidability of modal logics. We also establish that minor modifications to the restrictions of the syntax of the one-dimensional fragment lead to undecidable formalisms. Namely, the two-dimensional and non-uniform one-dimensional fragments are shown undecidable. Finally, we prove that with regard to expressivity, the one-dimensional fragment is incomparable with both the guarded negation fragment and two-variable logic with counting. Our proof of the decidability of the one-dimensional fragment is based on a technique involving a direct reduction to the monadic class of first-order logic. The novel technique is itself of an independent mathematical interest

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

    Get PDF
    During the last decades, a lot of effort was put into identifying decidable fragments of first-order logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded fragment, depending on the type of restriction imposed on formulae from the language. Despite the success of the mentioned logics in areas like formal verification and knowledge representation, such first-order fragments are too weak to express even the simplest statistical constraints, required for modelling of influence networks or in statistical reasoning. In this work we investigate the extensions of these classical decidable logics with percentage quantifiers, specifying how frequently a formula is satisfied in the indented model. We show, surprisingly, that all the mentioned decidable fragments become undecidable under such extension, sharpening the existing results in the literature. Our negative results are supplemented by decidability of the two-variable guarded fragment with even more expressive counting, namely Presburger constraints. Our results can be applied to infer decidability of various modal and description logics, e.g. Presburger Modal Logics with Converse or ALCI, with expressive cardinality constraints

    On two-variable guarded fragment logic with expressive local Presburger constraints

    Full text link
    We consider the extension of two-variable guarded fragment logic with local Presburger quantifiers. These are quantifiers that can express properties such as ``the number of incoming blue edges plus twice the number of outgoing red edges is at most three times the number of incoming green edges'' and captures various description logics with counting, but without constant symbols. We show that the satisfiability of this logic is EXP-complete. While the lower bound already holds for the standard two-variable guarded fragment logic, the upper bound is established by a novel, yet simple deterministic graph theoretic based algorithm

    A decidable policy language for history-based transaction monitoring

    Full text link
    Online trading invariably involves dealings between strangers, so it is important for one party to be able to judge objectively the trustworthiness of the other. In such a setting, the decision to trust a user may sensibly be based on that user's past behaviour. We introduce a specification language based on linear temporal logic for expressing a policy for categorising the behaviour patterns of a user depending on its transaction history. We also present an algorithm for checking whether the transaction history obeys the stated policy. To be useful in a real setting, such a language should allow one to express realistic policies which may involve parameter quantification and quantitative or statistical patterns. We introduce several extensions of linear temporal logic to cater for such needs: a restricted form of universal and existential quantification; arbitrary computable functions and relations in the term language; and a "counting" quantifier for counting how many times a formula holds in the past. We then show that model checking a transaction history against a policy, which we call the history-based transaction monitoring problem, is PSPACE-complete in the size of the policy formula and the length of the history. The problem becomes decidable in polynomial time when the policies are fixed. We also consider the problem of transaction monitoring in the case where not all the parameters of actions are observable. We formulate two such "partial observability" monitoring problems, and show their decidability under certain restrictions

    A Fine-Grained Hierarchy of Hard Problems in the Separated Fragment

    Get PDF
    Recently, the separated fragment (SF) has been introduced and proved to be decidable. Its defining principle is that universally and existentially quantified variables may not occur together in atoms. The known upper bound on the time required to decide SF's satisfiability problem is formulated in terms of quantifier alternations: Given an SF sentence ∃z⃗∀x⃗1∃y⃗1…∀x⃗n∃y⃗n.ψ\exists \vec{z} \forall \vec{x}_1 \exists \vec{y}_1 \ldots \forall \vec{x}_n \exists \vec{y}_n . \psi in which ψ\psi is quantifier free, satisfiability can be decided in nondeterministic nn-fold exponential time. In the present paper, we conduct a more fine-grained analysis of the complexity of SF-satisfiability. We derive an upper and a lower bound in terms of the degree of interaction of existential variables (short: degree)}---a novel measure of how many separate existential quantifier blocks in a sentence are connected via joint occurrences of variables in atoms. Our main result is the kk-NEXPTIME-completeness of the satisfiability problem for the set SF≤kSF_{\leq k} of all SF sentences that have degree kk or smaller. Consequently, we show that SF-satisfiability is non-elementary in general, since SF is defined without restrictions on the degree. Beyond trivial lower bounds, nothing has been known about the hardness of SF-satisfiability so far.Comment: Full version of the LICS 2017 extended abstract having the same title, 38 page
    • …
    corecore