63,663 research outputs found

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    Compressed Genotyping

    Full text link
    Significant volumes of knowledge have been accumulated in recent years linking subtle genetic variations to a wide variety of medical disorders from Cystic Fibrosis to mental retardation. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, largely due to the relatively tedious and expensive process of DNA sequencing. Since the genetic polymorphisms that underlie these disorders are relatively rare in the human population, the presence or absence of a disease-linked polymorphism can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies, and assembled a mathematical framework that has some important distinctions from 'traditional' compressed sensing ideas in order to address different biological and technical constraints.Comment: Submitted to IEEE Transaction on Information Theory - Special Issue on Molecular Biology and Neuroscienc

    The robust single machine scheduling problem with uncertain release and processing times

    Get PDF
    In this work, we study the single machine scheduling problem with uncertain release times and processing times of jobs. We adopt a robust scheduling approach, in which the measure of robustness to be minimized for a given sequence of jobs is the worst-case objective function value from the set of all possible realizations of release and processing times. The objective function value is the total flow time of all jobs. We discuss some important properties of robust schedules for zero and non-zero release times, and illustrate the added complexity in robust scheduling given non-zero release times. We propose heuristics based on variable neighborhood search and iterated local search to solve the problem and generate robust schedules. The algorithms are tested and their solution performance is compared with optimal solutions or lower bounds through numerical experiments based on synthetic data

    Minimizing the average distance to a closest leaf in a phylogenetic tree

    Full text link
    When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized "reference sequences" to a smaller subset that is as close as possible on average to a collection of "query sequences" of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally-derived sequences, such as for selecting "reference tree" sequences for phylogenetic placement of metagenomic reads. In this paper we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Among Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, while PAM only gives a solution for the pre-specified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, while the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software.Comment: Please contact us with any comments or questions
    • …
    corecore