18,507 research outputs found

    Sensor Scheduling for Energy-Efficient Target Tracking in Sensor Networks

    Full text link
    In this paper we study the problem of tracking an object moving randomly through a network of wireless sensors. Our objective is to devise strategies for scheduling the sensors to optimize the tradeoff between tracking performance and energy consumption. We cast the scheduling problem as a Partially Observable Markov Decision Process (POMDP), where the control actions correspond to the set of sensors to activate at each time step. Using a bottom-up approach, we consider different sensing, motion and cost models with increasing levels of difficulty. At the first level, the sensing regions of the different sensors do not overlap and the target is only observed within the sensing range of an active sensor. Then, we consider sensors with overlapping sensing range such that the tracking error, and hence the actions of the different sensors, are tightly coupled. Finally, we consider scenarios wherein the target locations and sensors' observations assume values on continuous spaces. Exact solutions are generally intractable even for the simplest models due to the dimensionality of the information and action spaces. Hence, we devise approximate solution techniques, and in some cases derive lower bounds on the optimal tradeoff curves. The generated scheduling policies, albeit suboptimal, often provide close-to-optimal energy-tracking tradeoffs

    New computational results on the discrete time/cost trade-off probem in project networks.

    Get PDF
    We describe a new exact procedure for the discrete time/cost trade-off problem in deterministic activity-on-the-arc networks of the CPM type, where the duration of each activity is a discrete, nonincreasing function of the amount of a single resource committed to it. The objective is to construct the complete and efficient time/cost profile over the set of feasible project durations. The procedure uses a horizon-varying approach based on the iterative optimal solution of the problem of minimizing the sum of the resource use over all activities subject to the activity precedence constraints and a project dealine. This optimal solution is derived using a branch-a- bound procedure which computes lower bounds by making convex piecewise linear underestimations of the discrete time/cost trade-off curves of the activities to be used as an input for an adapted version of the Fulkerson labelling algorithm for the linear time/cost trade-off problem. Branching involves the selection of an acrivity in order to partition its set of execution modes into two subsets which are used to derive improved convex piecewise linear underestimations. The procedure has been programmed in Visual C++ under Windows NT and has been validated using a factorial experiment on a large set of problem instances.Networks; Problems; Scheduling; Time/cost trade-off problem; CPM; Optimal;

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    Fully polynomial-time approximation schemes for time–cost tradeoff problems in series–parallel project networks

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe
    corecore