91 research outputs found

    Complexity of randomized algorithms for underdamped Langevin dynamics

    Full text link
    We establish an information complexity lower bound of randomized algorithms for simulating underdamped Langevin dynamics. More specifically, we prove that the worst L2L^2 strong error is of order Ω(dN3/2)\Omega(\sqrt{d}\, N^{-3/2}), for solving a family of dd-dimensional underdamped Langevin dynamics, by any randomized algorithm with only NN queries to U\nabla U, the driving Brownian motion and its weighted integration, respectively. The lower bound we establish matches the upper bound for the randomized midpoint method recently proposed by Shen and Lee [NIPS 2019], in terms of both parameters NN and dd.Comment: 27 pages; some revision (e.g., Sec 2.1), and new supplementary materials in Appendice

    Complexity of zigzag sampling algorithm for strongly log-concave distributions

    Full text link
    We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions. The zigzag process has the advantage of not requiring time discretization for implementation, and that each proposed bouncing event requires only one evaluation of partial derivative of the potential, while its convergence rate is dimension independent. Using these properties, we prove that the zigzag sampling algorithm achieves ε\varepsilon error in chi-square divergence with a computational cost equivalent to O(κ2d12(log1ε)32)O\bigl(\kappa^2 d^\frac{1}{2}(\log\frac{1}{\varepsilon})^{\frac{3}{2}}\bigr) gradient evaluations in the regime κdlogd\kappa \ll \frac{d}{\log d} under a warm start assumption, where κ\kappa is the condition number and dd is the dimension

    Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations

    Get PDF
    We present a framework that allows for the non-asymptotic study of the 2 -Wasserstein distance between the invariant distribution of an ergodic stochastic differential equation and the distribution of its numerical approximation in the strongly log-concave case. This allows us to study in a unified way a number of different integrators proposed in the literature for the overdamped and underdamped Langevin dynamics. In addition, we analyze a novel splitting method for the underdamped Langevin dynamics which only requires one gradient evaluation per time step. Under an additional smoothness assumption on a d --dimensional strongly log-concave distribution with condition number κ , the algorithm is shown to produce with an O(κ5/4d1/4ϵ−1/2) complexity samples from a distribution that, in Wasserstein distance, is at most ϵ>0 away from the target distribution

    Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations

    Get PDF
    We present a framework that allows for the non-asymptotic study of the 2 -Wasserstein distance between the invariant distribution of an ergodic stochastic differential equation and the distribution of its numerical approximation in the strongly log-concave case. This allows us to study in a unified way a number of different integrators proposed in the literature for the overdamped and underdamped Langevin dynamics. In addition, we analyze a novel splitting method for the underdamped Langevin dynamics which only requires one gradient evaluation per time step. Under an additional smoothness assumption on a d --dimensional strongly log-concave distribution with condition number κ , the algorithm is shown to produce with an O(κ5/4d1/4ϵ−1/2) complexity samples from a distribution that, in Wasserstein distance, is at most ϵ>0 away from the target distribution
    corecore