8,999 research outputs found

    Some Results on the Complexity of Numerical Integration

    Full text link
    This is a survey (21 pages, 124 references) written for the MCQMC 2014 conference in Leuven, April 2014. We start with the seminal paper of Bakhvalov (1959) and end with new results on the curse of dimension and on the complexity of oscillatory integrals. Some small errors of earlier versions are corrected

    MDL Denoising Revisited

    Full text link
    We refine and extend an earlier MDL denoising criterion for wavelet-based denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and non-informative wavelet coefficients, respectively. This suggests two refinements, adding a code-length for the model index, and extending the model in order to account for subband-dependent coefficient distributions. A third refinement is derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals.Comment: Submitted to IEEE Transactions on Information Theory, June 200

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration

    Convergence of Smoothed Empirical Measures with Applications to Entropy Estimation

    Full text link
    This paper studies convergence of empirical measures smoothed by a Gaussian kernel. Specifically, consider approximating P∗NσP\ast\mathcal{N}_\sigma, for Nσ≜N(0,σ2Id)\mathcal{N}_\sigma\triangleq\mathcal{N}(0,\sigma^2 \mathrm{I}_d), by P^n∗Nσ\hat{P}_n\ast\mathcal{N}_\sigma, where P^n\hat{P}_n is the empirical measure, under different statistical distances. The convergence is examined in terms of the Wasserstein distance, total variation (TV), Kullback-Leibler (KL) divergence, and χ2\chi^2-divergence. We show that the approximation error under the TV distance and 1-Wasserstein distance (W1\mathsf{W}_1) converges at rate eO(d)n−12e^{O(d)}n^{-\frac{1}{2}} in remarkable contrast to a typical n−1dn^{-\frac{1}{d}} rate for unsmoothed W1\mathsf{W}_1 (and d≥3d\ge 3). For the KL divergence, squared 2-Wasserstein distance (W22\mathsf{W}_2^2), and χ2\chi^2-divergence, the convergence rate is eO(d)n−1e^{O(d)}n^{-1}, but only if PP achieves finite input-output χ2\chi^2 mutual information across the additive white Gaussian noise channel. If the latter condition is not met, the rate changes to ω(n−1)\omega(n^{-1}) for the KL divergence and W22\mathsf{W}_2^2, while the χ2\chi^2-divergence becomes infinite - a curious dichotomy. As a main application we consider estimating the differential entropy h(P∗Nσ)h(P\ast\mathcal{N}_\sigma) in the high-dimensional regime. The distribution PP is unknown but nn i.i.d samples from it are available. We first show that any good estimator of h(P∗Nσ)h(P\ast\mathcal{N}_\sigma) must have sample complexity that is exponential in dd. Using the empirical approximation results we then show that the absolute-error risk of the plug-in estimator converges at the parametric rate eO(d)n−12e^{O(d)}n^{-\frac{1}{2}}, thus establishing the minimax rate-optimality of the plug-in. Numerical results that demonstrate a significant empirical superiority of the plug-in approach to general-purpose differential entropy estimators are provided.Comment: arXiv admin note: substantial text overlap with arXiv:1810.1158

    The Loss Rank Principle for Model Selection

    Full text link
    We introduce a new principle for model selection in regression and classification. Many regression models are controlled by some smoothness or flexibility or complexity parameter c, e.g. the number of neighbors to be averaged over in k nearest neighbor (kNN) regression or the polynomial degree in regression with polynomials. Let f_D^c be the (best) regressor of complexity c on data D. A more flexible regressor can fit more data D' well than a more rigid one. If something (here small loss) is easy to achieve it's typically worth less. We define the loss rank of f_D^c as the number of other (fictitious) data D' that are fitted better by f_D'^c than D is fitted by f_D^c. We suggest selecting the model complexity c that has minimal loss rank (LoRP). Unlike most penalized maximum likelihood variants (AIC,BIC,MDL), LoRP only depends on the regression function and loss function. It works without a stochastic noise model, and is directly applicable to any non-parametric regressor, like kNN. In this paper we formalize, discuss, and motivate LoRP, study it for specific regression problems, in particular linear ones, and compare it to other model selection schemes.Comment: 16 page
    • …
    corecore