2,843 research outputs found

    Approximation of high-dimensional parametric PDEs

    Get PDF
    Parametrized families of PDEs arise in various contexts such as inverse problems, control and optimization, risk assessment, and uncertainty quantification. In most of these applications, the number of parameters is large or perhaps even infinite. Thus, the development of numerical methods for these parametric problems is faced with the possible curse of dimensionality. This article is directed at (i) identifying and understanding which properties of parametric equations allow one to avoid this curse and (ii) developing and analyzing effective numerical methodd which fully exploit these properties and, in turn, are immune to the growth in dimensionality. The first part of this article studies the smoothness and approximability of the solution map, that is, the map a↦u(a)a\mapsto u(a) where aa is the parameter value and u(a)u(a) is the corresponding solution to the PDE. It is shown that for many relevant parametric PDEs, the parametric smoothness of this map is typically holomorphic and also highly anisotropic in that the relevant parameters are of widely varying importance in describing the solution. These two properties are then exploited to establish convergence rates of nn-term approximations to the solution map for which each term is separable in the parametric and physical variables. These results reveal that, at least on a theoretical level, the solution map can be well approximated by discretizations of moderate complexity, thereby showing how the curse of dimensionality is broken. This theoretical analysis is carried out through concepts of approximation theory such as best nn-term approximation, sparsity, and nn-widths. These notions determine a priori the best possible performance of numerical methods and thus serve as a benchmark for concrete algorithms. The second part of this article turns to the development of numerical algorithms based on the theoretically established sparse separable approximations. The numerical methods studied fall into two general categories. The first uses polynomial expansions in terms of the parameters to approximate the solution map. The second one searches for suitable low dimensional spaces for simultaneously approximating all members of the parametric family. The numerical implementation of these approaches is carried out through adaptive and greedy algorithms. An a priori analysis of the performance of these algorithms establishes how well they meet the theoretical benchmarks

    Q-learning with Nearest Neighbors

    Full text link
    We consider model-free reinforcement learning for infinite-horizon discounted Markov Decision Processes (MDPs) with a continuous state space and unknown transition kernel, when only a single sample path under an arbitrary policy of the system is available. We consider the Nearest Neighbor Q-Learning (NNQL) algorithm to learn the optimal Q function using nearest neighbor regression method. As the main contribution, we provide tight finite sample analysis of the convergence rate. In particular, for MDPs with a dd-dimensional state space and the discounted factor γ∈(0,1)\gamma \in (0,1), given an arbitrary sample path with "covering time" L L , we establish that the algorithm is guaranteed to output an ε\varepsilon-accurate estimate of the optimal Q-function using O~(L/(ε3(1−γ)7))\tilde{O}\big(L/(\varepsilon^3(1-\gamma)^7)\big) samples. For instance, for a well-behaved MDP, the covering time of the sample path under the purely random policy scales as O~(1/εd), \tilde{O}\big(1/\varepsilon^d\big), so the sample complexity scales as O~(1/εd+3).\tilde{O}\big(1/\varepsilon^{d+3}\big). Indeed, we establish a lower bound that argues that the dependence of Ω~(1/εd+2) \tilde{\Omega}\big(1/\varepsilon^{d+2}\big) is necessary.Comment: Accepted to NIPS 201
    • …
    corecore