120 research outputs found

    Complexity of cover-preserving embeddings of bipartite orders into Boolean lattices

    Get PDF
    We study the problem of deciding, whether a given partial order is embeddable into two consecutive layers of a Boolean lattice. Employing an equivalent condition for such em- beddability similar to the one given by J. Mittas and K. Reuter [5], we prove that the decision problem is NP-complete by showing a polynomial-time reduction from the not-all-equal variant of the Satisability problem

    COMPLEXITY OF COVER-PRESERVING EMBEDDINGS OF BIPARTITE ORDERS INTO BOOLEAN LATTICES

    Get PDF
    We study the problem of deciding, whether a given partial order is embeddable into two consecutive layers of a Boolean lattice. Employing an equivalent condition for such em- beddability similar to the one given by J. Mittas and K. Reuter [5], we prove that the decision problem is NP-complete by showing a polynomial-time reduction from the not-all-equal variant of the Satisability problem

    Club guessing and the universal models

    Full text link
    We survey the use of club guessing and other pcf constructs in the context of showing that a given partially ordered class of objects does not have a largest, or a universal element

    Universal Communication, Universal Graphs, and Graph Labeling

    Get PDF
    We introduce a communication model called universal SMP, in which Alice and Bob receive a function f belonging to a family ?, and inputs x and y. Alice and Bob use shared randomness to send a message to a third party who cannot see f, x, y, or the shared randomness, and must decide f(x,y). Our main application of universal SMP is to relate communication complexity to graph labeling, where the goal is to give a short label to each vertex in a graph, so that adjacency or other functions of two vertices x and y can be determined from the labels ?(x), ?(y). We give a universal SMP protocol using O(k^2) bits of communication for deciding whether two vertices have distance at most k in distributive lattices (generalizing the k-Hamming Distance problem in communication complexity), and explain how this implies a O(k^2 log n) labeling scheme for deciding dist(x,y) ? k on distributive lattices with size n; in contrast, we show that a universal SMP protocol for determining dist(x,y) ? 2 in modular lattices (a superset of distributive lattices) has super-constant ?(n^{1/4}) communication cost. On the other hand, we demonstrate that many graph families known to have efficient adjacency labeling schemes, such as trees, low-arboricity graphs, and planar graphs, admit constant-cost communication protocols for adjacency. Trees also have an O(k) protocol for deciding dist(x,y) ? k and planar graphs have an O(1) protocol for dist(x,y) ? 2, which implies a new O(log n) labeling scheme for the same problem on planar graphs

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by Turán's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts

    Subject Index Volumes 1–200

    Get PDF

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    • …
    corecore