52,086 research outputs found

    Solving order constraints in logarithmic space.

    Get PDF
    We combine methods of order theory, finite model theory, and universal algebra to study, within the constraint satisfaction framework, the complexity of some well-known combinatorial problems connected with a finite poset. We identify some conditions on a poset which guarantee solvability of the problems in (deterministic, symmetric, or non-deterministic) logarithmic space. On the example of order constraints we study how a certain algebraic invariance property is related to solvability of a constraint satisfaction problem in non-deterministic logarithmic space

    Fine-Grained Complexity of Constraint Satisfaction Problems through Partial Polymorphisms: A Survey (Dedicated to the memory of Professor Ivo Rosenberg)

    Get PDF
    International audienceConstraint satisfaction problems (CSPs) are combi-natorial problems with strong ties to universal algebra and clone theory. The recently proved CSP dichotomy theorem states that finite-domain CSPs are always either tractable or NP-complete. However, among the intractable cases there is a seemingly large variance in complexity, which cannot be explained by the classical algebraic approach using polymorphisms. In this contribution we will survey an alternative approach based on partial polymorphisms, which is useful for studying the fine-grained complexity of NP-complete CSPs. Moreover, we will state some challenging open problems in the research field

    On growth of Lie algebras, generalized partitions, and analytic functions

    Get PDF
    AbstractIn this paper we discuss some recent results on two different types of growth of Lie algebras that lead to some combinatorial problems. First, we study the growth of finitely generated Lie algebras (Sections 1–4). This problem leads to a study of generalized partitions. Recently the author has suggested a series of q-dimensions of algebras Dimq,q∈N which includes, as first terms, dimensions of vector spaces, Gelfand–Kirillov dimensions, and superdimensions. These dimensions enabled us to describe the change of a growth in transition from a Lie algebra to its universal enveloping algebra. In fact, this is a result on some generalized partitions. In this paper we give some results on asymptotics for those generalized partitions. As a main application, we obtain an asymptotical result for the growth of free polynilpotent finitely generated Lie algebras. As a corollary, we specify the asymptotic growth of lower central series ranks for free polynilpotent finitely generated groups. We essentially use Hilbert–Poincaré series and some facts on growth of complex functions which are analytic in the unit circle. By growth of such functions we mean their growth when the variable tends to 1. Also we discuss for all levels q=2,3,… what numbers α>0 can be a q-dimension of some Lie (associative) algebra. Second, we discuss a ‘codimension growth’ for varieties of Lie algebras (Sections 5 and 6). It is useful to consider some exponential generating functions called complexity functions. Those functions are entire functions of a complex variable provided the varieties of Lie algebras are nontrivial. We compute the complexity functions for some varieties. The growth of a complexity function for an arbitrary polynilpotent variety is evaluated. Here we need to study the connection between the growth of a fast increasing entire function and the behavior of its Taylor coefficients. As a result we obtain a result for the asymptotics of the codimension growth of a polynilpotent variety of Lie algebras. Also we obtain an upper bound for a growth of an arbitrary nontrivial variety of Lie algebras

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    A Survey on the Fine-grained Complexity of Constraint Satisfaction Problems Based on Partial Polymorphisms

    Get PDF
    International audienceConstraint satisfaction problems (CSPs) are combinatorial problems with strong ties to universal algebra and clone theory. The recently proved CSP dichotomy theorem states that each finite-domain CSP is either solvable in polynomial time, or that it is NP-complete. However, among the intractable CSPs there is a seemingly large variance in how fast they can be solved by exponential-time algorithms, which cannot be explained by the classical algebraic approach based on polymorphisms. In this contribution we will survey an alternative approach based on partial polymorphisms, which is useful for studying the fine-grained complexity of NP-complete CSPs. Moreover, we will state and discuss some challenging open problems in this research field

    The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case

    Full text link
    The constraint satisfaction probem (CSP) is a well-acknowledged framework in which many combinatorial search problems can be naturally formulated. The CSP may be viewed as the problem of deciding the truth of a logical sentence consisting of a conjunction of constraints, in front of which all variables are existentially quantified. The quantified constraint satisfaction problem (QCSP) is the generalization of the CSP where universal quantification is permitted in addition to existential quantification. The general intractability of these problems has motivated research studying the complexity of these problems under a restricted constraint language, which is a set of relations that can be used to express constraints. This paper introduces collapsibility, a technique for deriving positive complexity results on the QCSP. In particular, this technique allows one to show that, for a particular constraint language, the QCSP reduces to the CSP. We show that collapsibility applies to three known tractable cases of the QCSP that were originally studied using disparate proof techniques in different decades: Quantified 2-SAT (Aspvall, Plass, and Tarjan 1979), Quantified Horn-SAT (Karpinski, Kleine B\"{u}ning, and Schmitt 1987), and Quantified Affine-SAT (Creignou, Khanna, and Sudan 2001). This reconciles and reveals common structure among these cases, which are describable by constraint languages over a two-element domain. In addition to unifying these known tractable cases, we study constraint languages over domains of larger size
    • …
    corecore