1,384 research outputs found

    The Quantum Query Complexity of Algebraic Properties

    Full text link
    We present quantum query complexity bounds for testing algebraic properties. For a set S and a binary operation on S, we consider the decision problem whether SS is a semigroup or has an identity element. If S is a monoid, we want to decide whether S is a group. We present quantum algorithms for these problems that improve the best known classical complexity bounds. In particular, we give the first application of the new quantum random walk technique by Magniez, Nayak, Roland, and Santha that improves the previous bounds by Ambainis and Szegedy. We also present several lower bounds for testing algebraic properties.Comment: 13 pages, 0 figure

    On the Complexity of the Word Problem for Automaton Semigroups and Automaton Groups

    Full text link
    In this paper, we study the word problem for automaton semigroups and automaton groups from a complexity point of view. As an intermediate concept between automaton semigroups and automaton groups, we introduce automaton-inverse semigroups, which are generated by partial, yet invertible automata. We show that there is an automaton-inverse semigroup and, thus, an automaton semigroup with a PSPACE-complete word problem. We also show that there is an automaton group for which the word problem with a single rational constraint is PSPACE-complete. Additionally, we provide simpler constructions for the uniform word problems of these classes. For the uniform word problem for automaton groups (without rational constraints), we show NL-hardness. Finally, we investigate a question asked by Cain about a better upper bound for the length of a word on which two distinct elements of an automaton semigroup must act differently
    • …
    corecore