52,770 research outputs found

    Statistic Rate Monotonic Scheduling

    Full text link
    In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.National Science Foundation (CCR-970668

    Cost-aware scheduling of deadline-constrained task workflows in public cloud environments

    Get PDF
    Public cloud computing infrastructure offers resources on-demand, and makes it possible to develop applications that elastically scale when demand changes. This capacity can be used to schedule highly parallellizable task workflows, where individual tasks consist of many small steps. By dynamically scaling the number of virtual machines used, based on varying resource requirements of different steps, lower costs can be achieved, and workflows that would previously have been infeasible can be executed. In this paper, we describe how task workflows consisting of large numbers of distributable steps can be provisioned on public cloud infrastructure in a cost-efficient way, taking into account workflow deadlines. We formally define the problem, and describe an ILP-based algorithm and two heuristic algorithms to solve it. We simulate how the three algorithms perform when scheduling these task workflows on public cloud infrastructure, using the various instance types of the Amazon EC2 cloud, and we evaluate the achieved cost and execution speed of the three algorithms using two different task workflows based on a document processing application

    Genetic algorithm based DSP multiprocessor scheduling

    Get PDF
    • …
    corecore