674 research outputs found

    Multi-mode resource constrained multi-project scheduling and resource portfolio problem

    Get PDF
    This paper introduces a multi-project problem environment which involves multiple projects with assigned due dates; with activities that have alternative resource usage modes; a resource dedication policy that does not allow sharing of resources among projects throughout the planning horizon; and a total budget. There are three issues to face when investigating this multiproject environment. First, the total budget should be distributed among different resource types to determine the general resource capacities which correspond to the total amount for each renewable resource to be dedicated to the projects. With the general resource capacities at hand, the next issue is to determine the amounts of resources to be dedicated to the individual projects. With the dedication of resources accomplished, the scheduling of the projects' activities reduces to the multi-mode resource constrained project scheduling problem (MRCPSP) for each individual project. Finally the last issue is the effcient solution of the resulting MRCPSPs. In this paper, this multi-project environment is modeled in an integrated fashion and designated as the Resource Portfolio Problem. A two-phase and a monolithic genetic algorithm are proposed as two solution approaches each of which employs a new improvement move designated as the combinatorial auction for resource portfolio and the combinatorial auction for resource dedication. Computational study using test problems demonstrated the effectiveness of the solution approach proposed

    Short-Term Resource Allocation and Management

    Get PDF
    Almost all sectors of the economy, such as, government, healthcare, education, ship repair, construction, and manufacturing require project management. A key component of project management deals with scheduling of tasks such that limited resources are utilized in an effective manner. Current research on resource constrained project-scheduling has been classified as: a) Single project with single mode for various tasks, b) Single project with multiple task modes, c) Multiple projects with single task mode, and d) Multiple projects with multiple task modes.;This work extends the current multi-project, multi-mode scheduling techniques. The resources can be renewable, and non-renewable. In addition, it focuses on short term scheduling, that is, scheduling on an hourly, daily, or weekly basis. Long term scheduling assumes a stable system, that is, resources, priorities, and other constraints do no change during the scheduling period. In this research, short term scheduling assumes a dynamic system, that is, resources, priorities, and other constraints change over time.;A hybrid approach is proposed to address the dynamic nature of the problem. It is based on discrete event simulation and a set of empirical rules provided by the project manager. The project manager is assumed to be highly knowledgeable about the project. He/she is regarded as an integral part of the system. Such an approach is better suited to deal with real world scheduling. The proposed approach does not seek to provide a single optimum solution, instead, it generates a series of feasible solutions, along with the impact of each solution on schedule and cost.;Two project case studies dealing with finding an optimum solution were selected from the literature. The proposed technique was applied to the data set in these studies. In both cases the proposed approach found the optimum solution. The model was then applied to two additional problems to test the features that could not be tested on the dataset from the literature.;As for practical implications, the proposed approach enhances the decision making process, by providing more resource allocation flexibility, and results in improved solutions in terms of total project duration and cost. From an academic viewpoint, this research enriches the existing literature, as it provides an extension of the resource constrained project scheduling problems, a discrete event simulation and four cases studies which highlights relevant issues to model properly the complexity of real-life projects

    Multi-project scheduling with 2-stage decomposition

    Get PDF
    A non-preemptive, zero time lag multi-project scheduling problem with multiple modes and limited renewable and nonrenewable resources is considered. A 2-stage decomposition approach is adopted to formulate the problem as a hierarchy of 0-1 mathematical programming models. At stage one, each project is reduced to a macro-activity with macro-modes resulting in a single project network where the objective is the maximization of the net present value and the cash flows are positive. For setting the time horizon three different methods are developed and tested. A genetic algorithm approach is designed for this problem, which is also employed to generate a starting solution for the exact solution procedure. Using the starting times and the resource profiles obtained in stage one each project is scheduled at stage two for minimum makespan. The result of the first stage is subjected to a post-processing procedure to distribute the remaining resource capacities. Three new test problem sets are generated with 81, 84 and 27 problems each and three different configurations of solution procedures are tested
    • …
    corecore