7,017 research outputs found

    Uncertainty management by relaxation of conflicting constraints in production process scheduling

    Get PDF
    Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    TALplanner in IPC-2002: Extensions and Control Rules

    Full text link
    TALplanner is a forward-chaining planner that relies on domain knowledge in the shape of temporal logic formulas in order to prune irrelevant parts of the search space. TALplanner recently participated in the third International Planning Competition, which had a clear emphasis on increasing the complexity of the problem domains being used as benchmark tests and the expressivity required to represent these domains in a planning system. Like many other planners, TALplanner had support for some but not all aspects of this increase in expressivity, and a number of changes to the planner were required. After a short introduction to TALplanner, this article describes some of the changes that were made before and during the competition. We also describe the process of introducing suitable domain knowledge for several of the competition domains

    Short Term Unit Commitment as a Planning Problem

    Get PDF
    ā€˜Unit Commitmentā€™, setting online schedules for generating units in a power system to ensure supply meets demand, is integral to the secure, efficient, and economic daily operation of a power system. Conflicting desires for security of supply at minimum cost complicate this. Sustained research has produced methodologies within a guaranteed bound of optimality, given sufficient computing time. Regulatory requirements to reduce emissions in modern power systems have necessitated increased renewable generation, whose output cannot be directly controlled, increasing complex uncertainties. Traditional methods are thus less efficient, generating more costly schedules or requiring impractical increases in solution time. Meta-Heuristic approaches are studied to identify why this large body of work has had little industrial impact despite continued academic interest over many years. A discussion of lessons learned is given, and should be of interest to researchers presenting new Unit Commitment approaches, such as a Planning implementation. Automated Planning is a sub-field of Artificial Intelligence, where a timestamped sequence of predefined actions manipulating a system towards a goal configuration is sought. This differs from previous Unit Commitment formulations found in the literature. There are fewer times when a unitā€™s online status switches, representing a Planning action, than free variables in a traditional formulation. Efficient reasoning about these actions could reduce solution time, enabling Planning to tackle Unit Commitment problems with high levels of renewable generation. Existing Planning formulations for Unit Commitment have not been found. A successful formulation enumerating open challenges would constitute a good benchmark problem for the field. Thus, two models are presented. The first demonstrates the approachā€™s strength in temporal reasoning over numeric optimisation. The second balances this but current algorithms cannot handle it. Extensions to an existing algorithm are proposed alongside a discussion of immediate challenges and possible solutions. This is intended to form a base from which a successful methodology can be developed

    Extending classical planning with state constraints: Heuristics and search for optimal planning

    Get PDF
    We present a principled way of extending a classical AI planning formalism with systems of state constraints, which relate - sometimes determine - the values of variables in each state traversed by the plan. This extension occupies an attractive middle ground between expressivity and complexity. It enables modelling a new range of problems, as well as formulating more efficient models of classical planning problems. An example of the former is planning-based control of networked physical systems - power networks, for example - in which a local, discrete control action can have global effects on continuous quantities, such as altering flows across the entire network. At the same time, our extension remains decidable as long as the satisfiability of sets of state constraints is decidable, including in the presence of numeric state variables, and we demonstrate that effective techniques for cost-optimal planning known in the classical setting - in particular, relaxation-based admissible heuristics - can be adapted to the extended formalism. In this paper, we apply our approach to constraints in the form of linear or non-linear equations over numeric state variables, but the approach is independent of the type of state constraints, as long as there exists a procedure that decides their consistency. The planner and the constraint solver interact through a well-defined, narrow interface, in which the solver requires no specialisation to the planning contextThis work was supported by ARC project DP140104219, ā€œRobust AI Planning for Hybrid Systemsā€, and in part by ARO grant W911NF1210471 and ONR grant N000141210430

    Validating plans with continuous effects

    Get PDF
    A critical element in the use of PDDL2.1, the modelling language developed for the International Planning Competition series, has been the common understanding of the semantics of the language. The fact that this has been implemented in plan validation software was vital to the progress of the competition. However, the validation of plans using actions with continuous effects presents new challenges (that precede the challenges presented by planning with those effects). In this paper we review the need for continuous effects, their semantics and the problems that arise in validation of plans that include them. We report our progress in implementing the semantics in an extended version of the plan validation software
    • ā€¦
    corecore