371 research outputs found

    Profinite Groups Associated to Sofic Shifts are Free

    Get PDF
    We show that the maximal subgroup of the free profinite semigroup associated by Almeida to an irreducible sofic shift is a free profinite group, generalizing an earlier result of the second author for the case of the full shift (whose corresponding maximal subgroup is the maximal subgroup of the minimal ideal). A corresponding result is proved for certain relatively free profinite semigroups. We also establish some other analogies between the kernel of the free profinite semigroup and the \J-class associated to an irreducible sofic shift

    Representation Theory of Finite Semigroups, Semigroup Radicals and Formal Language Theory

    Full text link
    In this paper we characterize the congruence associated to the direct sum of all irreducible representations of a finite semigroup over an arbitrary field, generalizing results of Rhodes for the field of complex numbers. Applications are given to obtain many new results, as well as easier proofs of several results in the literature, involving: triangularizability of finite semigroups; which semigroups have (split) basic semigroup algebras, two-sided semidirect product decompositions of finite monoids; unambiguous products of rational languages; products of rational languages with counter; and \v{C}ern\'y's conjecture for an important class of automata

    Quivers of monoids with basic algebras

    Full text link
    We compute the quiver of any monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO\mathbf{DO}) to representation theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of R\mathscr R-trivial monoids, we also provide a semigroup theoretic description of the projective indecomposables and compute the Cartan matrix.Comment: Minor corrections and improvements to exposition were made. Some theorem statements were simplified. Also we made a language change. Several of our results are more naturally expressed using the language of Karoubi envelopes and irreducible morphisms. There are no substantial changes in actual result

    The complexity of the word problems for commutative semigroups and polynomial ideals

    Get PDF
    AbstractAny decision procedure for the word problems for commutative semigroups and polynomial deals inherently requires computational storage space growing exponentially with the size of the problem instance to which the procedure is applied. This bound is achieved by a simple procedure for the semigroup problem

    Green's Relations in Finite Transformation Semigroups

    Get PDF
    We consider the complexity of Green's relations when the semigroup is given by transformations on a finite set. Green's relations can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes then correspond to the strongly connected components. It is not difficult to show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for constant alphabet is rather involved. Our results also apply to automata and their syntactic semigroups.Comment: Full version of a paper submitted to CSR 2017 on 2016-12-1

    M\"obius Functions and Semigroup Representation Theory II: Character formulas and multiplicities

    Full text link
    We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota's theory of M\"obius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete description of the spectra of random walks on finite semigroups admitting a faithful representation by upper triangular matrices over the complex numbers. These include the random walks on chambers of hyperplane arrangements studied by Bidigare, Hanlon, Rockmere, Brown and Diaconis. Applications are also given to decomposing tensor powers and exterior products of rook matrix representations of inverse semigroups, generalizing and simplifying earlier results of Solomon for the rook monoid.Comment: Some minor typos corrected and references update
    • …
    corecore