192 research outputs found

    Factor versus palindromic complexity of uniformly recurrent infinite words

    Get PDF
    We study the relation between the palindromic and factor complexity of infinite words. We show that for uniformly recurrent words one has P(n)+P(n+1) \leq \Delta C(n) + 2, for all n \in N. For a large class of words it is a better estimate of the palindromic complexity in terms of the factor complexity then the one presented by Allouche et al. We provide several examples of infinite words for which our estimate reaches its upper bound. In particular, we derive an explicit prescription for the palindromic complexity of infinite words coding r-interval exchange transformations. If the permutation \pi connected with the transformation is given by \pi(k)=r+1-k for all k, then there is exactly one palindrome of every even length, and exactly r palindromes of every odd length.Comment: 16 pages, submitted to Theoretical Computer Scienc

    A geometrical characterization of factors of multidimensional Billiard words and some applications

    Get PDF
    AbstractWe consider Billiard words in alphabets with k>2 letters. Such words are associated with some k-dimensional positive vector α→=(α1,α2,…,αk). The language of these words is already known in the usual case, i.e. when the αj are linearly independent over Q and so for their inverses. Here we study the language of these words when there exist some linear relationships. We give a new geometrical characterization of the factors of Billiard words. As a consequence, we get some results on the associated language, and on the complexity and palindromic complexity of these words. The situation is quite different from the usual case. The languages of two distinct Billiard words with the same direction generally have a finite intersection. As examples, we get some Standard Billiard words of three letters without any palindromic factor of even length, or Billiard words of three letters whose palindromic factors have a bounded length. These results are obtained by geometrical methods

    Effective Physical Processes and Active Information in Quantum Computing

    Get PDF
    The recent debate on hypercomputation has arisen new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics. We propose here the idea of "effective physical process" as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information source in accordance with Bell's constraints. On condition that we give up the formal concept of "universality", the possibility to realize quantum oracles is reachable. In this way computation is led back to the logic of physical world.Comment: 10 pages; Added references for sections 2 and

    Quantal-Classical Duality and the Semiclassical Trace Formula

    Full text link
    We consider Hamiltonian systems which can be described both classically and quantum mechanically. Trace formulas establish links between the energy spectra of the quantum description and the spectrum of actions of periodic orbits in the classical description. This duality is investigated in the present paper. The duality holds for chaotic as well as for integrable systems. For billiards the quantal spectrum (eigenvalues of the Helmholtz equation) and the classical spectrum (lengths of periodic orbits) are two manifestations of the billiard's boundary. The trace formula expresses this link as a Fourier transform relation between the corresponding spectral densities. It follows that the two-point statistics are also simply related. The universal correlations of the quantal spectrum are well known, consequently one can deduce the classical universal correlations. An explicit expression for the scale of the classical correlations is derived and interpreted. This allows a further extension of the formalism to the case of complex billiard systems, and in particular to the most interesting case of diffusive system. The concept of classical correlations allows a better understanding of the so-called diagonal approximation and its breakdown. It also paves the way towards a semiclassical theory that is capable of global description of spectral statistics beyond the breaktime. An illustrative application is the derivation of the disorder-limited breaktime in case of a disordered chain, thus obtaining a semiclassical theory for localization. A numerical study of classical correlations in the case of the 3D Sinai billiard is presented. We gain a direct understanding of specific statistical properties of the classical spectrum, as well as their semiclassical manifestation in the quantal spectrum.Comment: 42 pages, 17 figure

    Normal forms and complex periodic orbits in semiclassical expansions of Hamiltonian systems

    Full text link
    Bifurcations of periodic orbits as an external parameter is varied are a characteristic feature of generic Hamiltonian systems. Meyer's classification of normal forms provides a powerful tool to understand the structure of phase space dynamics in their neighborhood. We provide a pedestrian presentation of this classical theory and extend it by including systematically the periodic orbits lying in the complex plane on each side of the bifurcation. This allows for a more coherent and unified treatment of contributions of periodic orbits in semiclassical expansions. The contribution of complex fixed points is find to be exponentially small only for a particular type of bifurcation (the extremal one). In all other cases complex orbits give rise to corrections in powers of â„Ź\hbar and, unlike the former one, their contribution is hidden in the ``shadow'' of a real periodic orbit.Comment: better ps figures available at http://www.phys.univ-tours.fr/~mouchet or on request to [email protected]
    • …
    corecore