61 research outputs found

    The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

    Get PDF
    The routing of a DNA-origami scaffold strand is often modelled as an Eulerian circuit of an Eulerian graph in combinatorial models of DNA origami design. The knot type of the scaffold strand dictates the feasibility of an Eulerian circuit to be used as the scaffold route in the design. Motivated by the topology of scaffold routings in 3D DNA origami, we investigate the knottedness of Eulerian circuits on surface-embedded graphs. We show that certain graph embeddings, checkerboard colorable, always admit unknotted Eulerian circuits. On the other hand, we prove that if a graph admits an embedding in a torus that is not checkerboard colorable, then it can be re-embedded so that all its non-intersecting Eulerian circuits are knotted. For surfaces of genus greater than one, we present an infinite family of checkerboard-colorable graph embeddings where there exist knotted Eulerian circuits

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Contents

    Get PDF

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. ([13]). On the other hand, Chudnovsky and Seymour ([8]) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with n vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (not necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations

    Geometric and Topological Combinatorics

    Get PDF
    The 2007 Oberwolfach meeting “Geometric and Topological Combinatorics” presented a great variety of investigations where topological and algebraic methods are brought into play to solve combinatorial and geometric problems, but also where geometric and combinatorial ideas are applied to topological questions
    corecore