43 research outputs found

    MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER COMBINATORIAL DOMAINS

    Get PDF
    In my Ph.D. dissertation, I have studied problems arising in various aspects of preferences: preference modeling, preference learning, and preference reasoning, when preferences concern outcomes ranging over combinatorial domains. Preferences is a major research component in artificial intelligence (AI) and decision theory, and is closely related to the social choice theory considered by economists and political scientists. In my dissertation, I have exploited emerging connections between preferences in AI and social choice theory. Most of my research is on qualitative preference representations that extend and combine existing formalisms such as conditional preference nets, lexicographic preference trees, answer-set optimization programs, possibilistic logic, and conditional preference networks; on learning problems that aim at discovering qualitative preference models and predictive preference information from practical data; and on preference reasoning problems centered around qualitative preference optimization and aggregation methods. Applications of my research include recommender systems, decision support tools, multi-agent systems, and Internet trading and marketing platforms

    Functional Bipartite Ranking: a Wavelet-Based Filtering Approach

    Full text link
    It is the main goal of this article to address the bipartite ranking issue from the perspective of functional data analysis (FDA). Given a training set of independent realizations of a (possibly sampled) second-order random function with a (locally) smooth autocorrelation structure and to which a binary label is randomly assigned, the objective is to learn a scoring function s with optimal ROC curve. Based on linear/nonlinear wavelet-based approximations, it is shown how to select compact finite dimensional representations of the input curves adaptively, in order to build accurate ranking rules, using recent advances in the ranking problem for multivariate data with binary feedback. Beyond theoretical considerations, the performance of the learning methods for functional bipartite ranking proposed in this paper are illustrated by numerical experiments

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore