93,184 research outputs found

    Addressing Data Quality in Healthcare

    Get PDF
    Data quality is an important part of information processing, but its application in practice is often underestimated. The complexity of data quality management, especially in the case of big data, makes it difficult to work in different areas of application. Although medical records are a significant source of errors in most cases data quality assessment on medical data is partially performed. The presented data quality analysis and recommendations in this paper can help physicians and software developers to understand better data quality dimensions, identify gaps in quality assessment, and develop |own procedures and techniques that correspond to their specific use cases.BG05M2OP001-1.001-0004 Universities for Science, Informatics and Technologies in the e-Society (UNITe) and the National Scientific Program “eHealth” in Bulgaria

    Tensions and paradoxes in electronic patient record research: a systematic literature review using the meta-narrative method

    Get PDF
    Background: The extensive and rapidly expanding research literature on electronic patient records (EPRs) presents challenges to systematic reviewers. This literature is heterogeneous and at times conflicting, not least because it covers multiple research traditions with different underlying philosophical assumptions and methodological approaches. Aim: To map, interpret and critique the range of concepts, theories, methods and empirical findings on EPRs, with a particular emphasis on the implementation and use of EPR systems. Method: Using the meta-narrative method of systematic review, and applying search strategies that took us beyond the Medline-indexed literature, we identified over 500 full-text sources. We used ‘conflicting’ findings to address higher-order questions about how the EPR and its implementation were differently conceptualised and studied by different communities of researchers. Main findings: Our final synthesis included 24 previous systematic reviews and 94 additional primary studies, most of the latter from outside the biomedical literature. A number of tensions were evident, particularly in relation to: [1] the EPR (‘container’ or ‘itinerary’); [2] the EPR user (‘information-processer’ or ‘member of socio-technical network’); [3] organizational context (‘the setting within which the EPR is implemented’ or ‘the EPR-in-use’); [4] clinical work (‘decision-making’ or ‘situated practice’); [5] the process of change (‘the logic of determinism’ or ‘the logic of opposition’); [6] implementation success (‘objectively defined’ or ‘socially negotiated’); and [7] complexity and scale (‘the bigger the better’ or ‘small is beautiful’). Findings suggest that integration of EPRs will always require human work to re-contextualize knowledge for different uses; that whilst secondary work (audit, research, billing) may be made more efficient by the EPR, primary clinical work may be made less efficient; that paper, far from being technologically obsolete, currently offers greater ecological flexibility than most forms of electronic record; and that smaller systems may sometimes be more efficient and effective than larger ones. Conclusions: The tensions and paradoxes revealed in this study extend and challenge previous reviews and suggest that the evidence base for some EPR programs is more limited than is often assumed. We offer this paper as a preliminary contribution to a much-needed debate on this evidence and its implications, and suggest avenues for new research

    Nanoinformatics: developing new computing applications for nanomedicine

    Get PDF
    Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    Understanding safety-critical interactions with a home medical device through Distributed Cognition

    Get PDF
    As healthcare shifts from the hospital to the home, it is becoming increasingly important to understand how patients interact with home medical devices, to inform the safe and patient-friendly design of these devices. Distributed Cognition (DCog) has been a useful theoretical framework for understanding situated interactions in the healthcare domain. However, it has not previously been applied to study interactions with home medical devices. In this study, DCog was applied to understand renal patients’ interactions with Home Hemodialysis Technology (HHT), as an example of a home medical device. Data was gathered through ethnographic observations and interviews with 19 renal patients and interviews with seven professionals. Data was analyzed through the principles summarized in the Distributed Cognition for Teamwork methodology. In this paper we focus on the analysis of system activities, information flows, social structures, physical layouts, and artefacts. By explicitly considering different ways in which cognitive processes are distributed, the DCog approach helped to understand patients’ interaction strategies, and pointed to design opportunities that could improve patients’ experiences of using HHT. The findings highlight the need to design HHT taking into consideration likely scenarios of use in the home and of the broader home context. A setting such as home hemodialysis has the characteristics of a complex and safety-critical socio-technical system, and a DCog approach effectively helps to understand how safety is achieved or compromised in such a system
    • 

    corecore