54,446 research outputs found

    Detecting multineuronal temporal patterns in parallel spike trains

    Get PDF
    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept

    Entropy-based parametric estimation of spike train statistics

    Full text link
    We consider the evolution of a network of neurons, focusing on the asymptotic behavior of spikes dynamics instead of membrane potential dynamics. The spike response is not sought as a deterministic response in this context, but as a conditional probability : "Reading out the code" consists of inferring such a probability. This probability is computed from empirical raster plots, by using the framework of thermodynamic formalism in ergodic theory. This gives us a parametric statistical model where the probability has the form of a Gibbs distribution. In this respect, this approach generalizes the seminal and profound work of Schneidman and collaborators. A minimal presentation of the formalism is reviewed here, while a general algorithmic estimation method is proposed yielding fast convergent implementations. It is also made explicit how several spike observables (entropy, rate, synchronizations, correlations) are given in closed-form from the parametric estimation. This paradigm does not only allow us to estimate the spike statistics, given a design choice, but also to compare different models, thus answering comparative questions about the neural code such as : "are correlations (or time synchrony or a given set of spike patterns, ..) significant with respect to rate coding only ?" A numerical validation of the method is proposed and the perspectives regarding spike-train code analysis are also discussed.Comment: 37 pages, 8 figures, submitte

    Evaluating kernels on Xeon Phi to accelerate Gysela application

    Get PDF
    This work describes the challenges presented by porting parts ofthe Gysela code to the Intel Xeon Phi coprocessor, as well as techniques used for optimization, vectorization and tuning that can be applied to other applications. We evaluate the performance of somegeneric micro-benchmark on Phi versus Intel Sandy Bridge. Several interpolation kernels useful for the Gysela application are analyzed and the performance are shown. Some memory-bound and compute-bound kernels are accelerated by a factor 2 on the Phi device compared to Sandy architecture. Nevertheless, it is hard, if not impossible, to reach a large fraction of the peek performance on the Phi device,especially for real-life applications as Gysela. A collateral benefit of this optimization and tuning work is that the execution time of Gysela (using 4D advections) has decreased on a standard architecture such as Intel Sandy Bridge.Comment: submitted to ESAIM proceedings for CEMRACS 2014 summer school version reviewe

    To which extend is the "neural code" a metric ?

    Get PDF
    Here is proposed a review of the different choices to structure spike trains, using deterministic metrics. Temporal constraints observed in biological or computational spike trains are first taken into account. The relation with existing neural codes (rate coding, rank coding, phase coding, ..) is then discussed. To which extend the "neural code" contained in spike trains is related to a metric appears to be a key point, a generalization of the Victor-Purpura metric family being proposed for temporal constrained causal spike trainsComment: 5 pages 5 figures Proceeding of the conference NeuroComp200

    A three-dimensional lattice gas model for amphiphilic fluid dynamics

    Full text link
    We describe a three-dimensional hydrodynamic lattice-gas model of amphiphilic fluids. This model of the non-equilibrium properties of oil-water-surfactant systems, which is a non-trivial extension of an earlier two-dimensional realisation due to Boghosian, Coveney and Emerton [Boghosian, Coveney, and Emerton 1996, Proc. Roy. Soc. A 452, 1221-1250], can be studied effectively only when it is implemented using high-performance computing and visualisation techniques. We describe essential aspects of the model's theoretical basis and computer implementation, and report on the phenomenological properties of the model which confirm that it correctly captures binary oil-water and surfactant-water behaviour, as well as the complex phase behaviour of ternary amphiphilic fluids.Comment: 34 pages, 13 figures, high resolution figures available on reques
    corecore