35,665 research outputs found

    Backward adaptive pixel-based fast predictive motion estimation

    Get PDF

    Semi-hierarchical based motion estimation algorithm for the dirac video encoder

    Get PDF
    Having fast and efficient motion estimation is crucial in today’s advance video compression technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to maintain the accuracy of the motion estimation to a certain level

    Dynamically variable step search motion estimation algorithm and a dynamically reconfigurable hardware for its implementation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. For the recently available High Definition (HD) video formats, the computational complexity of De full search (FS) ME algorithm is prohibitively high, whereas the PSNR obtained by fast search ME algorithms is low. Therefore, ill this paper, we present Dynamically Variable Step Search (DVSS) ME algorithm for Processing high definition video formats and a dynamically reconfigurable hardware efficiently implementing DVSS algorithm. The architecture for efficiently implementing DVSS algorithm. The simulation results showed that DVSS algorithm performs very close to FS algorithm by searching much fewer search locations than FS algorithm and it outperforms successful past search ME algorithms by searching more search locations than these algorithms. The proposed hardware is implemented in VHDL and is capable, of processing high definition video formats in real time. Therefore, it can be used in consumer electronics products for video compression, frame rate up-conversion and de-interlacing(1)

    Simplex minimisation for multiple-reference motion estimation

    Get PDF

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    Low computational complexity variable block size (VBS) partitioning for motion estimation using the Walsh Hadamard transform (WHT)

    Get PDF
    Variable Block Size (VBS) based motion estimation has been adapted in state of the art video coding, such as H.264/AVC, VC-1. However, a low complexity H.264/AVC encoder cannot take advantage of VBS due to its power consumption requirements. In this paper, we present a VBS partition algorithm based on a binary motion edge map without either initial motion estimation or Rate-Distortion (R-D) optimization for selecting modes. The proposed algorithm uses the Walsh Hadamard Transform (WHT) to create a binary edge map, which provides a computational complexity cost effectiveness compared to other light segmentation methods typically used to detect the required region

    A high performance hardware architecture for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. One bit transform (IBT) based ME algorithms have low computational complexity. Therefore, in this paper, we propose a high performance systolic hardware architecture for IBT based ME. The proposed hardware performs full search ME for 4 Macroblocks in parallel and it is the fastest IBT based ME hardware reported in the literature. In addition, it uses less on-chip memory than the previous IBT based ME hardware by using a novel data reuse scheme and memory organization. The proposed hardware is implemented in Verilog HDL. It consumes %34 of the slices in a Xilinx XC2VP30-7 FPGA. It works at 115 MHz in the same FPGA and is capable of processing 50 1920x1080 full High Definition frames per second. Therefore, it can be used in consumer electronics products that require real-time video processing or compression
    corecore