35 research outputs found

    The Fluted Fragment with Transitivity

    Get PDF
    We study the satisfiability problem for the fluted fragment extended with transitive relations. We show that the logic enjoys the finite model property when only one transitive relation is available. On the other hand we show that the satisfiability problem is undecidable already for the two-variable fragment of the logic in the presence of three transitive relations

    Fluted Logic with Counting

    Get PDF
    The fluted fragment is a fragment of first-order logic in which the order of quantification of variables coincides with the order in which those variables appear as arguments of predicates. It is known that the fluted fragment possesses the finite model property. In this paper, we extend the fluted fragment by the addition of counting quantifiers. We show that the resulting logic retains the finite model property, and that the satisfiability problem for its (m+1)-variable sub-fragment is in m-NExpTime for all positive m. We also consider the satisfiability and finite satisfiability problems for the extension of any of these fragments in which the fluting requirement applies only to sub-formulas having at least three free variables

    Quine’s Fluted Fragment is Non-elementary

    Get PDF
    We study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, originally identified by W.V. Quine. We show that the satisfiability problem for this fragment has non-elementary complexity, thus refuting an earlier published claim by W.C. Purdy that it is in NExpTime. More precisely, we consider, for all m greater than 1, the intersection of the fluted fragment and the m-variable fragment of first-order logic. We show that this sub-fragment forces (m/2)-tuply exponentially large models, and that its satisfiability problem is (m/2)-NExpTime-hard. We round off by using a corrected version of Purdy\u27s construction to show that the m-variable fluted fragment has the m-tuply exponential model property, and that its satisfiability problem is in m-NExpTime

    Adding Transitivity and Counting to the Fluted Fragment

    Get PDF
    We study the impact of adding both counting quantifiers and a single transitive relation to the fluted fragment - a fragment of first-order logic originating in the work of W.V.O. Quine. The resulting formalism can be viewed as a multi-variable, non-guarded extension of certain systems of description logic featuring number restrictions and transitive roles, but lacking role-inverses. We establish the finite model property for our logic, and show that the satisfiability problem for its k-variable sub-fragment is in (k+1)-NExpTime. We also derive ExpSpace-hardness of the satisfiability problem for the two-variable, fluted fragment with one transitive relation (but without counting quantifiers), and prove that, when a second transitive relation is allowed, both the satisfiability and the finite satisfiability problems for the two-variable fluted fragment with counting quantifiers become undecidable

    Craig Interpolation for Decidable First-Order Fragments

    Full text link
    We show that the guarded-negation fragment (GNFO) is, in a precise sense, the smallest extension of the guarded fragment (GFO) with Craig interpolation. In contrast, we show that the smallest extension of the two-variable fragment (FO2), and of the forward fragment (FF) with Craig interpolation, is full first-order logic. Similarly, we also show that all extensions of FO2 and of the fluted fragment (FL) with Craig interpolation are undecidable.Comment: Submitted for FoSSaCS 2024. arXiv admin note: substantial text overlap with arXiv:2304.0808

    Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates

    Get PDF
    First-order logic is one of the most prominent formalisms in computer science and mathematics. Since there is no algorithm capable of solving its satisfiability problem, first-order logic is said to be undecidable. The classical decision problem is the quest for a delineation between the decidable and the undecidable parts. The results presented in this thesis shed more light on the boundary and open new perspectives on the landscape of known decidable fragments. In the first part we focus on the new concept of separateness of variables and explore its applicability to the classical decision problem and beyond. Two disjoint sets of first-order variables are separated in a given formula if none of its atoms contains variables from both sets. This notion facilitates the definition of decidable extensions of many well-known decidable first-order fragments. We demonstrate this for several prefix fragments, several guarded fragments, the two-variable fragment, and for the fluted fragment. Although the extensions exhibit the same expressive power as the respective originals, certain logical properties can be expressed much more succinctly. In two cases the succinctness gap cannot be bounded using elementary functions. This fact already hints at computationally hard satisfiability problems. Indeed, we derive non-elementary lower bounds for the separated fragment, an extension of the Bernays-Schönfinkel-Ramsey fragment (E*A*-prefix sentences). On the semantic level, separateness of quantified variables may lead to weaker dependences than we encounter in general. We investigate this property in the context of model-checking games. The focus of the second part of the thesis is on linear arithmetic with uninterpreted predicates. Two novel decidable fragments are presented, both based on the Bernays-Schönfinkel-Ramsey fragment. On the negative side, we identify several small fragments of the language for which satisfiability is undecidable.Untersuchungen der Logik erster Stufe blicken auf eine lange Tradition zurück. Es ist allgemein bekannt, dass das zugehörige Erfüllbarkeitsproblem im Allgemeinen nicht algorithmisch gelöst werden kann - man spricht daher von einer unentscheidbaren Logik. Diese Beobachtung wirft ein Schlaglicht auf die prinzipiellen Grenzen der Fähigkeiten von Computern im Allgemeinen aber auch des automatischen Schließens im Besonderen. Das Hilbertsche Entscheidungsproblem wird heute als die Erforschung der Grenze zwischen entscheidbaren und unentscheidbaren Teilen der Logik erster Stufe verstanden, wobei die untersuchten Fragmente der Logik mithilfe klar zu erfassender und berechenbarer syntaktischer Eigenschaften beschrieben werden. Viele Forscher haben bereits zu dieser Untersuchung beigetragen und zahlreiche entscheidbare und unentscheidbare Fragmente entdeckt und erforscht. Die vorliegende Dissertation setzt diese Tradition mit einer Reihe vornehmlich positiver Resultate fort und eröffnet neue Blickwinkel auf eine Reihe von Fragmenten, die im Laufe der letzten einhundert Jahre untersucht wurden. Im ersten Teil der Arbeit steht das syntaktische Konzept der Separiertheit von Variablen im Mittelpunkt, und dessen Anwendbarkeit auf das Entscheidungsproblem und darüber hinaus wird erforscht. Zwei Mengen von Individuenvariablen gelten bezüglich einer gegebenen Formel als separiert, falls in jedem Atom der Formel die Variablen aus höchstens einer der beiden Mengen vorkommen. Mithilfe dieses leicht verständlichen Begriffs lassen sich viele wohlbekannte entscheidbare Fragmente der Logik erster Stufe zu größeren Klassen von Formeln erweitern, die dennoch entscheidbar sind. Dieser Ansatz wird für neun Fragmente im Detail dargelegt, darunter mehrere Präfix-Fragmente, das Zwei-Variablen-Fragment und sogenannte "guarded" und " uted" Fragmente. Dabei stellt sich heraus, dass alle erweiterten Fragmente ebenfalls das monadische Fragment erster Stufe ohne Gleichheit enthalten. Obwohl die erweiterte Syntax in den betrachteten Fällen nicht mit einer erhöhten Ausdrucksstärke einhergeht, können bestimmte Zusammenhänge mithilfe der erweiterten Syntax deutlich kürzer formuliert werden. Zumindest in zwei Fällen ist diese Diskrepanz nicht durch eine elementare Funktion zu beschränken. Dies liefert einen ersten Hinweis darauf, dass die algorithmische Lösung des Erfüllbarkeitsproblems für die erweiterten Fragmente mit sehr hohem Rechenaufwand verbunden ist. Tatsächlich wird eine nicht-elementare untere Schranke für den entsprechenden Zeitbedarf beim sogenannten separierten Fragment, einer Erweiterung des bekannten Bernays-Schönfinkel-Ramsey-Fragments, abgeleitet. Darüber hinaus wird der Ein uss der Separiertheit von Individuenvariablen auf der semantischen Ebene untersucht, wo Abhängigkeiten zwischen quantifizierten Variablen durch deren Separiertheit stark abgeschwächt werden können. Für die genauere formale Betrachtung solcher als schwach bezeichneten Abhängigkeiten wird auf sogenannte Hintikka-Spiele zurückgegriffen. Den Schwerpunkt des zweiten Teils der vorliegenden Arbeit bildet das Entscheidungsproblem für die lineare Arithmetik über den rationalen Zahlen in Verbindung mit uninterpretierten Prädikaten. Es werden zwei bislang unbekannte entscheidbare Fragmente dieser Sprache vorgestellt, die beide auf dem Bernays-Schönfinkel-Ramsey-Fragment aufbauen. Ferner werden neue negative Resultate entwickelt und mehrere unentscheidbare Fragmente vorgestellt, die lediglich einen sehr eingeschränkten Teil der Sprache benötigen
    corecore