783 research outputs found

    On Lower Bounds for Parity Branching Programs

    Get PDF
    Diese Arbeit beschaeftigt sich mit der Komplexität von parity Branching Programmen. Es werden superpolynomiale untere Schranken für verschiedene Varianten bewiesen, nämlich für well-structured graph-driven parity branching programs, general graph-driven parity branching programs und Summen von graph-driven parity branching programs

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Restricted branching programs and hardware verification

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 71-77).by Stephen John Ponzio.Ph.D

    Prof. Dr. math. Ingo Wegener

    Get PDF

    Automata oriented program verification

    Get PDF

    Leaf languages and string compression

    Get PDF
    AbstractTight connections between leaf languages and strings compressed by straight-line programs (SLPs) are established. It is shown that the compressed membership problem for a language L is complete for the leaf language class defined by L via logspace machines. A more difficult variant of the compressed membership problem for L is shown to be complete for the leaf language class defined by L via polynomial time machines. As a corollary, it is shown that there exists a fixed linear visibly pushdown language for which the compressed membership problem is PSPACE-complete. For XML languages, it is shown that the compressed membership problem is coNP-complete.Furthermore it is shown that the embedding problem for SLP-compressed strings is hard for PP (probabilistic polynomial time)
    corecore