25,278 research outputs found

    Complexity results for three-dimensional orthogonal graph drawing

    Get PDF
    AbstractIn this paper we consider the problem of finding three-dimensional orthogonal drawings of maximum degree six graphs from the computational complexity perspective. We introduce a 3SAT reduction framework that can be used to prove the NP-hardness of finding three-dimensional orthogonal drawings with specific constraints. By using the framework we show that, given a three-dimensional orthogonal shape of a graph (a description of the sequence of axis-parallel segments of each edge), finding the coordinates for nodes and bends such that the drawing has no intersection is NP-complete. Conversely, we show that if node coordinates are fixed, finding a shape for the edges that is compatible with a non-intersecting drawing is a feasible problem, which becomes NP-complete if a maximum of two bends per edge is allowed. We comment on the impact of these results on the two open problems of determining whether a graph always admits a drawing with at most two bends per edge and of characterizing orthogonal shapes admitting an orthogonal drawing without intersections

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    Complexity dichotomy on partial grid recognition

    Get PDF
    Deciding whether a graph can be embedded in a grid using only unit-length edges is NP-complete, even when restricted to binary trees. However, it is not difficult to devise a number of graph classes for which the problem is polynomial, even trivial. A natural step, outstanding thus far, was to provide a broad classification of graphs that make for polynomial or NP-complete instances. We provide such a classification based on the set of allowed vertex degrees in the input graphs, yielding a full dichotomy on the complexity of the problem. As byproducts, the previous NP-completeness result for binary trees was strengthened to strictly binary trees, and the three-dimensional version of the problem was for the first time proven to be NP-complete. Our results were made possible by introducing the concepts of consistent orientations and robust gadgets, and by showing how the former allows NP-completeness proofs by local replacement even in the absence of the latter

    On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

    Full text link
    We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of max-degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Searching Polyhedra by Rotating Half-Planes

    Full text link
    The Searchlight Scheduling Problem was first studied in 2D polygons, where the goal is for point guards in fixed positions to rotate searchlights to catch an evasive intruder. Here the problem is extended to 3D polyhedra, with the guards now boundary segments who rotate half-planes of illumination. After carefully detailing the 3D model, several results are established. The first is a nearly direct extension of the planar one-way sweep strategy using what we call exhaustive guards, a generalization that succeeds despite there being no well-defined notion in 3D of planar "clockwise rotation". Next follow two results: every polyhedron with r>0 reflex edges can be searched by at most r^2 suitably placed guards, whereas just r guards suffice if the polyhedron is orthogonal. (Minimizing the number of guards to search a given polyhedron is easily seen to be NP-hard.) Finally we show that deciding whether a given set of guards has a successful search schedule is strongly NP-hard, and that deciding if a given target area is searchable at all is strongly PSPACE-hard, even for orthogonal polyhedra. A number of peripheral results are proved en route to these central theorems, and several open problems remain for future work.Comment: 45 pages, 26 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    corecore