10,230 research outputs found

    Polynomial-time approximation schemes for scheduling problems with time lags

    Get PDF
    We identify two classes of machine scheduling problems with time lags that possess Polynomial-Time Approximation Schemes (PTASs). These classes together, one for minimizing makespan and one for minimizing total completion time, include many well-studied time lag scheduling problems. The running times of these approximation schemes are polynomial in the number of jobs, but exponential in the number of machines and the ratio between the largest time lag and the smallest positive operation time. These classes constitute the first PTAS results for scheduling problems with time lags

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Evaluation of Material Shortage Effect on Assembly Systems Considering Flexibility Levels

    Get PDF
    The global pandemic caused delays in global supply chains, and numerous manufacturing companies are experiencing a lack of materials and components. This material shortage affects assembly systems at various levels: process level (decreasing of the resource efficiency), system level (blocking or s tarvation of production entities), and company level (breaking the deadlines for the supplying of the products to customers or retailers). Flexible assembly systems allow dynamic reactions in such uncertain environments. However, online scheduling algorithms of current research are not considering reactions to material shortages. In the present research, we aim to evaluate the influence of material shortage on the assembly system performance. The paper presents a discrete event simulation of an assembly system. The system architecture, its behavior, the resources, their capacities, and product specific operations are included. The material shortage effect on the assembly system is compensated utilizing different system flexibility levels, characterized by operational and routing flexibility. An online control algorithm determines optimal production operation under material shortage uncertain conditions. With industrial data, different simulation scenarios evaluate the benefits of assembly systems with varying flexibility levels. Consideration of flexibility levels might facilitate exploration of the optimal flexibility level with the lowest production makespan that influence further supply chain, as makespan minimization cause reducing of delays for following supply chain entities

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Heuristic Approach for Bicriteria in Constrained Three Stage Flow Shop Scheduling

    Get PDF
    This paper presents bicriteria in n-jobs, three machines flow shop scheduling problem to minimize the total elapsed time and rental cost of the machines under a specified rental policy in which the processing time, independent setup time each associated with probabilities including transportation time and job block concept. Further the concept of the break down interval for which the machines are not available for the processing is included. A heuristic approach method to find optimal or near optimal sequence has been discussed. A computer programme followed by a numerical illustration is given to substantiate the algorithm. Keywords: Flow Shop, Processing time, Setup time, Makespan, Break-down interval, Job block, Transportation time, Rental Cost

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Platooning-based control techniques in transportation and logistic

    Get PDF
    This thesis explores the integration of autonomous vehicle technology with smart manufacturing systems. At first, essential control methods for autonomous vehicles, including Linear Matrix Inequalities (LMIs), Linear Quadratic Regulation (LQR)/Linear Quadratic Tracking (LQT), PID controllers, and dynamic control logic via flowcharts, are examined. These techniques are adapted for platooning to enhance coordination, safety, and efficiency within vehicle fleets, and various scenarios are analyzed to confirm their effectiveness in achieving predetermined performance goals such as inter-vehicle distance and fuel consumption. A first approach on simplified hardware, yet realistic to model the vehicle's behavior, is treated to further prove the theoretical results. Subsequently, performance improvement in smart manufacturing systems (SMS) is treated. The focus is placed on offline and online scheduling techniques exploiting Mixed Integer Linear Programming (MILP) to model the shop floor and Model Predictive Control (MPC) to adapt scheduling to unforeseen events, in order to understand how optimization algorithms and decision-making frameworks can transform resource allocation and production processes, ultimately improving manufacturing efficiency. In the final part of the work, platooning techniques are employed within SMS. Autonomous Guided Vehicles (AGVs) are reimagined as autonomous vehicles, grouping them within platoon formations according to different criteria, and controlled to avoid collisions while carrying out production orders. This strategic integration applies platooning principles to transform AGV logistics within the SMS. The impact of AGV platooning on key performance metrics, such as makespan, is devised, providing insights into optimizing manufacturing processes. Throughout this work, various research fields are examined, with intersecting future technologies from precise control in autonomous vehicles to the coordination of manufacturing resources. This thesis provides a comprehensive view of how optimization and automation can reshape efficiency and productivity not only in the domain of autonomous vehicles but also in manufacturing

    On the Integration of Unmanned Aerial Vehicles into Public Airspace

    Get PDF
    Unmanned Aerial Vehicles will soon be integrated in the airspace and start serving us in various capacities such as package delivery, surveillance, search and rescue missions, inspection of infrastructure, precision agriculture, and cinematography. In this thesis, motivated by the challenges this new era brings about, we design a layered architecture called Internet of Drones (IoD). In this architecture, we propose a structure for the traffic in the airspace as well as the interaction between the components of our system such as unmanned aerial vehicles and service providers. We envision the minimal features that need to be implemented in various layers of the architecture, both on the Unmanned Aerial Vehicle (UAV)'s side and on the service providers' side. We compare and contrast various approaches in three existing networks, namely the Internet, the cellular network, and the air traffic control network and discuss how they relate to IoD. As a tool to aid in enabling integration of drones in the airspace, we create a traffic flow model. This model will assign velocities to drones according to the traffic conditions in a stable way as well as help to study the formation of congestion in the airspace. We take the novel problem posed by the 3D nature of UAV flights as opposed to the 2D nature of road vehicles movements and create a fitting traffic flow model. In this model, instead of structuring our model in terms of roads and lanes as is customary for ground vehicles, we structure it in terms of channels, density and capacities. The congestion is formulated as the perceived density given the capacity and the velocity of vehicles will be set accordingly. This view removes the need for a lane changing model and its complexity which we believe should be abstracted away even for the ground vehicles as it is not fundamentally related to the longitudinal movements of vehicles. Our model uses a scalar capacity parameter and can exhibit both passing and blocking behaviors. Furthermore, our model can be solved analytically in the blocking regime and piece-wise analytically solved when in the passing regime. Finally, it is not possible to integrate UAVs into the airspace without some mechanism for coordination or in other words scheduling. We define a new scheduling problem in this regard that we call Vehicle Scheduling Problem (VSP). We prove NP-hardness for all the commonly used objective functions in the context of Job Shop Scheduling Problem (JSP). Then for the number of missed deadlines as our objective function, we give a Mixed Integer Programming (MIP) formulation of VSP. We design a heuristic algorithm and compare the quality of the schedules created for small instances with the exact solution to the MIP instance. For larger instances, these comparisons are made with a baseline algorithm

    Design of a Reference Architecture for Production Scheduling Applications based on a Problem Representation including Practical Constraints

    Get PDF
    Changing customer demands increase the complexity and importance of production scheduling, requiring better scheduling algorithms, e.g., machine learning algorithms. At the same time, current research often neglects practical constraints, e.g., changeovers or transportation. To address this issue, we derive a representation of the scheduling problem and develop a reference architecture for future scheduling applications to increase the impact of future research. To achieve this goal, we apply a design science research approach and, first, rigorously identify the problem and derive requirements for a scheduling application based on a structured literature review. Then, we develop the problem representation and reference architecture as design science artifacts. Finally, we demonstrate the artifacts in an application scenario and publish the resulting prototypical scheduling application, enabling machine learning-based scheduling algorithms, for usage in future development projects. Our results guide future research into including practical constraints and provide practitioners with a framework for developing scheduling applications
    • 

    corecore