155 research outputs found

    Application of integer quadratic programming in detection of high-dimensional wireless systems

    Get PDF
    High-dimensional wireless systems have recently generated a great deal of interest due to their ability to accommodate increasing demands for high transmission data rates with high communication reliability. Examples of such large-scale systems include single-input, single-output symbol spread OFDM system, large-scale single-user multi-input multi-output (MIMO) OFDM systems, and large-scale multiuser MIMO systems. In these systems, the number of symbols required to be jointly detected at the receiver is relatively large. The challenge with the practical realization of these systems is to design a detection scheme that provides high communication reliability with reasonable computational complexity, even as the number of simultaneously transmitted independent communication signals becomes very large.^ Most of the optimal or near-optimal detection techniques that have been proposed in the literature of relatively low-dimensional wireless systems, such as MIMO systems in which number of antennas is less than 10, become problematic for high-dimensional detection problems. That is, their performance degrades or the computational complexity becomes prohibitive, especially when higher-order QAM constellations are employed.^ In the first part of this thesis, we propose a near-optimal detection technique which offers a flexible trade-off between complexity and performance. The proposed technique formulates the detection problem in terms of Integer Quadratic Programming (IQP), which is then solved through a controlled Branch and Bound (BB) search tree algorithm. In addition to providing good performance, an important feature of this approach is that its computational complexity remains roughly the same even as we increase the constellation order from 4-QAM to 256-QAM. The performance of the proposed algorithm is investigated for both symbol spread OFDM systems and large-scale MIMO systems with both frequency selective and at fading channels.^ The second part of this work focuses on a reduced complexity version of IQP referred to as relaxed quadratic programming (QP). In particular, QP is used to reformulate two widely used detection schemes for MIMO OFDM: (1) Successive Interference Cancellation (SIC) and (2) Iterative Detecting and Decoding (IDD). First, SIC-based algorithms are derived via a QP formulation in contrast to using a linear MMSE detector at each stage. The resulting QP-SIC algorithms offer lower computational complexity than the SIC schemes that employ linear MMSE at each stage, especially when the dimension of the received signal vector is high. Three versions of QP-SIC are proposed based on various trade-offs between complexity and receiver performance; each of the three QP-SIC algorithms outperforms existing SIC techniques. Second, IDD-based algorithms are developed using a QP detector. We show how the soft information, in terms of the Log Likelihood Ratio (LLR), can be extracted from the QP detector. Further, the procedure for incorporating the a-priori information that is passed from the channel decoder to the QP detector is developed. Simulation results are presented demonstrating that the use of QP in IDD offers improved performance at the cost of a reasonable increase in complexity compared to linear detectors

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Soft-decision equalization techniques for frequency selective MIMO channels

    Get PDF
    Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI

    Iterative Detection for Overloaded Multiuser MIMO OFDM Systems

    Get PDF
    Inspired by multiuser detection (MUD) and the ‘Turbo principle’, this thesis deals with iterative interference cancellation (IIC) in overloaded multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Linear detection schemes, such as zero forcing (ZF) and minimum mean square error (MMSE) cannot be used for the overloaded system because of the rank deficiency of channel matrix, while the optimal approach, the maximum likelihood (ML) detection has high computational complexity. In this thesis, an iterative interference cancellation (IIC) multiuser detection scheme with matched filter and convolutional codes is considered. The main idea of this combination is a low complexity receiver. Parallel interference cancellation (PIC) is employed to improve the multiuser receiver performance for overloaded systems. A log-likelihood ratio (LLR) converter is proposed to further improve the reliability of the soft value converted from the output of the matched filter. Simulation results show that the bit error rate (BER) performance of this method is close to the optimal approach for a two user system. However, for the four user or more user system, it has an error floor of the BER performance. For this case, a channel selection scheme is proposed to distinguish whether the channel is good or bad by using the mutual information based on the extrinsic information transfer (EXIT) chart. The mutual information can be predicted in a look-up table which greatly reduces the complexity. For those ‘bad’ channels identified by the channel selection, we introduce two adaptive transmission methods to deal with such channels: one uses a lower code rate, and the other is multiple transmissions. The use of an IIC receiver with the interleave-division multiple access (IDMA) to further improve the BER performance without any channel selection is also investigated. It has been shown that this approach can remove the error floor. Finally, the influence of channel accuracy on the IIC is investigated. Pilot-based Wiener filter channel estimation is used to test and verify how much the IIC is influenced by the channel accuracy

    Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks

    Get PDF
    The fifth generation of cellular communication systems is foreseen to enable a multitude of new applications and use cases with very different requirements. A new 5G multiservice air interface needs to enhance broadband performance as well as provide new levels of reliability, latency and supported number of users. In this paper we focus on the massive Machine Type Communications (mMTC) service within a multi-service air interface. Specifically, we present an overview of different physical and medium access techniques to address the problem of a massive number of access attempts in mMTC and discuss the protocol performance of these solutions in a common evaluation framework

    Polynomial matrix QR decomposition and iterative decoding of frequency selective MIMO channels

    Get PDF
    For a frequency flat multi-input multi-output (MIMO) system the QR decomposition can be applied to reduce the MIMO channel equalization problem to a set of decision feedback based single channel problems. Using a novel technique for polynomial matrix QR decomposition (PMQRD) based on Givens rotations, we show the PMQRD can do likewise for a frequency selective MIMO system. Two types of transmitter design, based on Horizontal and Vertical Bell Laboratories Layered Space Time (H-BLAST, V-BLAST) encoding have been implemented. Receiver processing utilizes Turbo equalization to exploit multipath delay spread and to facilitate multi-stream data feedback. Average bit error rate simulations show a considerable improvement over a benchmark orthogonal frequency division multiplexing (OFDM) technique. The proposed scheme thereby has potential applicability in MIMO communication applications, particularly for a TDMA system with frequency selective channels

    Smart Antenna-Aided Multicarrier Transceivers for Mobile Communications

    Get PDF
    In spite of an immense interest from both the academic and the industrial communities, a practical multipleinput multiple-output (MIMO) transceiver architecture, capable of approaching channel capacity boundaries in realistic channel conditions remains largely an open problem. Consequently, in this treatise I derive an advanced iterative, so called turbo multi-antenna-multi-carrier (MAMC) receiver architecture. Following the philosophy of turbo processing, our turbo spacial division multiplexed (SDM)-orthogonal frequency division multiplexed (OFDM) receiver comprises a succession of soft-input-soft-output detection modules, which iteratively exchange soft bit-related information and thus facilitate a substantial improvement of the overall system performance. In this treatise, I explore two major aspects of the turbo wireless mobile receiver design. Firstly, I consider the problem of soft-decision-feedback aided acquisition of the propagation conditions experienced by the transmitted signal and secondly, I explore the issue of the soft-input-soft-output detection of the spatially-multiplexed information-carrying signals
    • …
    corecore