1,344 research outputs found

    Using cylindrical algebraic decomposition and local Fourier analysis to study numerical methods: two examples

    Full text link
    Local Fourier analysis is a strong and well-established tool for analyzing the convergence of numerical methods for partial differential equations. The key idea of local Fourier analysis is to represent the occurring functions in terms of a Fourier series and to use this representation to study certain properties of the particular numerical method, like the convergence rate or an error estimate. In the process of applying a local Fourier analysis, it is typically necessary to determine the supremum of a more or less complicated term with respect to all frequencies and, potentially, other variables. The problem of computing such a supremum can be rewritten as a quantifier elimination problem, which can be solved with cylindrical algebraic decomposition, a well-known tool from symbolic computation. The combination of local Fourier analysis and cylindrical algebraic decomposition is a machinery that can be applied to a wide class of problems. In the present paper, we will discuss two examples. The first example is to compute the convergence rate of a multigrid method. As second example we will see that the machinery can also be used to do something rather different: We will compare approximation error estimates for different kinds of discretizations.Comment: The research was funded by the Austrian Science Fund (FWF): J3362-N2

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Parametric free-form shape design with PDE models and reduced basis method

    Get PDF
    We present a coupling of the reduced basis methods and free-form deformations for shape optimization and design of systems modelled by elliptic PDEs. The free-form deformations give a parameterization of the shape that is independent of the mesh, the initial geometry, and the underlying PDE model. The resulting parametric PDEs are solved by reduced basis methods. An important role in our implementation is played by the recently proposed empirical interpolation method, which allows approximating the non-affinely parameterized deformations with affinely parameterized ones. These ingredients together give rise to an efficient online computational procedure for a repeated evaluation design environment like the one for shape optimization. The proposed approach is demonstrated on an airfoil inverse design problem. © 2010 Elsevier B.V

    Bibliographie

    Get PDF

    A Tool for Integer Homology Computation: Lambda-At Model

    Full text link
    In this paper, we formalize the notion of lambda-AT-model (where λ\lambda is a non-null integer) for a given chain complex, which allows the computation of homological information in the integer domain avoiding using the Smith Normal Form of the boundary matrices. We present an algorithm for computing such a model, obtaining Betti numbers, the prime numbers p involved in the invariant factors of the torsion subgroup of homology, the amount of invariant factors that are a power of p and a set of representative cycles of generators of homology mod p, for each p. Moreover, we establish the minimum valid lambda for such a construction, what cuts down the computational costs related to the torsion subgroup. The tools described here are useful to determine topological information of nD structured objects such as simplicial, cubical or simploidal complexes and are applicable to extract such an information from digital pictures.Comment: Journal Image and Vision Computing, Volume 27 Issue 7, June, 200

    Nested quasicrystalline discretisations of the line

    Get PDF
    One-dimensional cut-and-project point sets obtained from the square lattice in the plane are considered from a unifying point of view and in the perspective of aperiodic wavelet constructions. We successively examine their geometrical aspects, combinatorial properties from the point of view of the theory of languages, and self-similarity with algebraic scaling factor θ\theta. We explain the relation of the cut-and-project sets to non-standard numeration systems based on θ\theta. We finally examine the substitutivity, a weakened version of substitution invariance, which provides us with an algorithm for symbolic generation of cut-and-project sequences

    Model-Based Problem Solving through Symbolic Regression via Pareto Genetic Programming.

    Get PDF
    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust models by goal softening and adaptive fitness evaluations. In addition to the new strategies for model development and model selection, this dissertation presents a new approach for analysis, ranking, and compression of given multi-dimensional input-response data for the purpose of balancing the information content of undesigned data sets.
    • …
    corecore