1,197 research outputs found

    Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

    Full text link
    In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is O(n^mlogn^)O(\sqrt{\hat{n}m}\log \hat{n}), and the running time of the best known deterministic algorithm is O(n+m)O(n+m), where nn is the number of vertices, n^\hat{n} is the number of vertices with at least one outgoing edge; mm is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non-constant depth evaluating. Another two are the single source longest paths search for weighted DAGs and the diameter search problem for unweighted DAGs.Comment: UCNC2019 Conference pape

    Revising Type-2 Computation and Degrees of Discontinuity

    Get PDF
    By the sometimes so-called MAIN THEOREM of Recursive Analysis, every computable real function is necessarily continuous. Weihrauch and Zheng (TCS'2000), Brattka (MLQ'2005), and Ziegler (ToCS'2006) have considered different relaxed notions of computability to cover also discontinuous functions. The present work compares and unifies these approaches. This is based on the concept of the JUMP of a representation: both a TTE-counterpart to the well known recursion-theoretic jump on Kleene's Arithmetical Hierarchy of hypercomputation: and a formalization of revising computation in the sense of Shoenfield. We also consider Markov and Banach/Mazur oracle-computation of discontinuous fu nctions and characterize the computational power of Type-2 nondeterminism to coincide with the first level of the Analytical Hierarchy.Comment: to appear in Proc. CCA'0

    Computing with and without arbitrary large numbers

    Full text link
    In the study of random access machines (RAMs) it has been shown that the availability of an extra input integer, having no special properties other than being sufficiently large, is enough to reduce the computational complexity of some problems. However, this has only been shown so far for specific problems. We provide a characterization of the power of such extra inputs for general problems. To do so, we first correct a classical result by Simon and Szegedy (1992) as well as one by Simon (1981). In the former we show mistakes in the proof and correct these by an entirely new construction, with no great change to the results. In the latter, the original proof direction stands with only minor modifications, but the new results are far stronger than those of Simon (1981). In both cases, the new constructions provide the theoretical tools required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended abstract. The full paper was presented at TAMC 2013. (Reference given is for the paper version, as it appears in the proceedings.

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure
    corecore