47,322 research outputs found

    Complexity-Theoretic Limitations on Blind Delegated Quantum Computation

    Get PDF
    Blind delegation protocols allow a client to delegate a computation to a server so that the server learns nothing about the input to the computation apart from its size. For the specific case of quantum computation we know that blind delegation protocols can achieve information-theoretic security. In this paper we prove, provided certain complexity-theoretic conjectures are true, that the power of information-theoretically secure blind delegation protocols for quantum computation (ITS-BQC protocols) is in a number of ways constrained. In the first part of our paper we provide some indication that ITS-BQC protocols for delegating BQP\sf BQP computations in which the client and the server interact only classically are unlikely to exist. We first show that having such a protocol with O(nd)O(n^d) bits of classical communication implies that BQP⊂MA/O(nd)\mathsf{BQP} \subset \mathsf{MA/O(n^d)}. We conjecture that this containment is unlikely by providing an oracle relative to which BQP⊂̞MA/O(nd)\mathsf{BQP} \not\subset \mathsf{MA/O(n^d)}. We then show that if an ITS-BQC protocol exists with polynomial classical communication and which allows the client to delegate quantum sampling problems, then there exist non-uniform circuits of size 2n−Ω(n/log(n))2^{n - \mathsf{\Omega}(n/log(n))}, making polynomially-sized queries to an NPNP\sf NP^{NP} oracle, for computing the permanent of an n×nn \times n matrix. The second part of our paper concerns ITS-BQC protocols in which the client and the server engage in one round of quantum communication and then exchange polynomially many classical messages. First, we provide a complexity-theoretic upper bound on the types of functions that could be delegated in such a protocol, namely QCMA/qpoly∩coQCMA/qpoly\mathsf{QCMA/qpoly \cap coQCMA/qpoly}. Then, we show that having such a protocol for delegating NP\mathsf{NP}-hard functions implies coNPNPNP⊆NPNPPromiseQMA\mathsf{coNP^{NP^{NP}}} \subseteq \mathsf{NP^{NP^{PromiseQMA}}}.Comment: Improves upon, supersedes and corrects our earlier submission, which previously included an error in one of the main theorem

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developements are related to diverse mathematical ïŹelds such as algebraic geometry, combinatorial number theory, probability theory, quantum mechanics, representation theory, and the theory of error-correcting codes

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developments are related to diverse mathematical ïŹelds such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes

    Exact and Efficient Simulation of Concordant Computation

    Get PDF
    Concordant computation is a circuit-based model of quantum computation for mixed states, that assumes that all correlations within the register are discord-free (i.e. the correlations are essentially classical) at every step of the computation. The question of whether concordant computation always admits efficient simulation by a classical computer was first considered by B. Eastin in quant-ph/1006.4402v1, where an answer in the affirmative was given for circuits consisting only of one- and two-qubit gates. Building on this work, we develop the theory of classical simulation of concordant computation. We present a new framework for understanding such computations, argue that a larger class of concordant computations admit efficient simulation, and provide alternative proofs for the main results of quant-ph/1006.4402v1 with an emphasis on the exactness of simulation which is crucial for this model. We include detailed analysis of the arithmetic complexity for solving equations in the simulation, as well as extensions to larger gates and qudits. We explore the limitations of our approach, and discuss the challenges faced in developing efficient classical simulation algorithms for all concordant computations.Comment: 16 page

    The Impact of Imperfect Timekeeping on Quantum Control

    Full text link
    In order to unitarily evolve a quantum system, an agent requires knowledge of time, a parameter which no physical clock can ever perfectly characterise. In this letter, we study how limitations on acquiring knowledge of time impact controlled quantum operations in different paradigms. We show that the quality of timekeeping an agent has access to limits the gate complexity they are able to achieve within circuit-based quantum computation. It also exponentially impacts state preparation for measurement-based quantum computation. Another area where quantum control is relevant is quantum thermodynamics. In that context, we show that cooling a qubit can be achieved using a timer of arbitrary quality for control: timekeeping error only impacts the rate of cooling and not the achievable temperature. Our analysis combines techniques from the study of autonomous quantum clocks and the theory of quantum channels to understand the effect of imperfect timekeeping on controlled quantum dynamics.Comment: 5 + 7 pages, 2 figure

    Quark: A Gradient-Free Quantum Learning Framework for Classification Tasks

    Full text link
    As more practical and scalable quantum computers emerge, much attention has been focused on realizing quantum supremacy in machine learning. Existing quantum ML methods either (1) embed a classical model into a target Hamiltonian to enable quantum optimization or (2) represent a quantum model using variational quantum circuits and apply classical gradient-based optimization. The former method leverages the power of quantum optimization but only supports simple ML models, while the latter provides flexibility in model design but relies on gradient calculation, resulting in barren plateau (i.e., gradient vanishing) and frequent classical-quantum interactions. To address the limitations of existing quantum ML methods, we introduce Quark, a gradient-free quantum learning framework that optimizes quantum ML models using quantum optimization. Quark does not rely on gradient computation and therefore avoids barren plateau and frequent classical-quantum interactions. In addition, Quark can support more general ML models than prior quantum ML methods and achieves a dataset-size-independent optimization complexity. Theoretically, we prove that Quark can outperform classical gradient-based methods by reducing model query complexity for highly non-convex problems; empirically, evaluations on the Edge Detection and Tiny-MNIST tasks show that Quark can support complex ML models and significantly reduce the number of measurements needed for discovering near-optimal weights for these tasks.Comment: under revie

    Variational Quantum Neural Networks (VQNNS) in Image Classification

    Full text link
    Quantum machine learning has established as an interdisciplinary field to overcome limitations of classical machine learning and neural networks. This is a field of research which can prove that quantum computers are able to solve problems with complex correlations between inputs that can be hard for classical computers. This suggests that learning models made on quantum computers may be more powerful for applications, potentially faster computation and better generalization on less data. The objective of this paper is to investigate how training of quantum neural network (QNNs) can be done using quantum optimization algorithms for improving the performance and time complexity of QNNs. A classical neural network can be partially quantized to create a hybrid quantum-classical neural network which is used mainly in classification and image recognition. In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs). We encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network parameters. The parameters are tuned with an iterative quantum approximate optimisation (QAOA) mixer and problem hamiltonians. VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets (more complex) which converges the computation in lesser time than QNN with decent training accuracy
    • 

    corecore