8,378 research outputs found

    Training-free Measures Based on Algorithmic Probability Identify High Nucleosome Occupancy in DNA Sequences

    Full text link
    We introduce and study a set of training-free methods of information-theoretic and algorithmic complexity nature applied to DNA sequences to identify their potential capabilities to determine nucleosomal binding sites. We test our measures on well-studied genomic sequences of different sizes drawn from different sources. The measures reveal the known in vivo versus in vitro predictive discrepancies and uncover their potential to pinpoint (high) nucleosome occupancy. We explore different possible signals within and beyond the nucleosome length and find that complexity indices are informative of nucleosome occupancy. We compare against the gold standard (Kaplan model) and find similar and complementary results with the main difference that our sequence complexity approach. For example, for high occupancy, complexity-based scores outperform the Kaplan model for predicting binding representing a significant advancement in predicting the highest nucleosome occupancy following a training-free approach.Comment: 8 pages main text (4 figures), 12 total with Supplementary (1 figure

    A rapid and scalable method for multilocus species delimitation using Bayesian model comparison and rooted triplets

    Get PDF
    Multilocus sequence data provide far greater power to resolve species limits than the single locus data typically used for broad surveys of clades. However, current statistical methods based on a multispecies coalescent framework are computationally demanding, because of the number of possible delimitations that must be compared and time-consuming likelihood calculations. New methods are therefore needed to open up the power of multilocus approaches to larger systematic surveys. Here, we present a rapid and scalable method that introduces two new innovations. First, the method reduces the complexity of likelihood calculations by decomposing the tree into rooted triplets. The distribution of topologies for a triplet across multiple loci has a uniform trinomial distribution when the 3 individuals belong to the same species, but a skewed distribution if they belong to separate species with a form that is specified by the multispecies coalescent. A Bayesian model comparison framework was developed and the best delimitation found by comparing the product of posterior probabilities of all triplets. The second innovation is a new dynamic programming algorithm for finding the optimum delimitation from all those compatible with a guide tree by successively analyzing subtrees defined by each node. This algorithm removes the need for heuristic searches used by current methods, and guarantees that the best solution is found and potentially could be used in other systematic applications. We assessed the performance of the method with simulated, published and newly generated data. Analyses of simulated data demonstrate that the combined method has favourable statistical properties and scalability with increasing sample sizes. Analyses of empirical data from both eukaryotes and prokaryotes demonstrate its potential for delimiting species in real cases

    Frequency Effects on Predictability of Stock Returns

    Full text link
    We propose that predictability is a prerequisite for profitability on financial markets. We look at ways to measure predictability of price changes using information theoretic approach and employ them on all historical data available for NYSE 100 stocks. This allows us to determine whether frequency of sampling price changes affects the predictability of those. We also relations between price changes predictability and the deviation of the price formation processes from iid as well as the stock's sector. We also briefly comment on the complicated relationship between predictability of price changes and the profitability of algorithmic trading.Comment: 8 pages, 16 figures, submitted for possible publication to Computational Intelligence for Financial Engineering and Economics 2014 conferenc

    A decision-theoretic approach for segmental classification

    Full text link
    This paper is concerned with statistical methods for the segmental classification of linear sequence data where the task is to segment and classify the data according to an underlying hidden discrete state sequence. Such analysis is commonplace in the empirical sciences including genomics, finance and speech processing. In particular, we are interested in answering the following question: given data yy and a statistical model π(x,y)\pi(x,y) of the hidden states xx, what should we report as the prediction x^\hat{x} under the posterior distribution π(x∣y)\pi (x|y)? That is, how should you make a prediction of the underlying states? We demonstrate that traditional approaches such as reporting the most probable state sequence or most probable set of marginal predictions can give undesirable classification artefacts and offer limited control over the properties of the prediction. We propose a decision theoretic approach using a novel class of Markov loss functions and report x^\hat{x} via the principle of minimum expected loss (maximum expected utility). We demonstrate that the sequence of minimum expected loss under the Markov loss function can be enumerated exactly using dynamic programming methods and that it offers flexibility and performance improvements over existing techniques. The result is generic and applicable to any probabilistic model on a sequence, such as Hidden Markov models, change point or product partition models.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS657 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore