14,553 research outputs found

    Logic Programming and Logarithmic Space

    Full text link
    We present an algebraic view on logic programming, related to proof theory and more specifically linear logic and geometry of interaction. Within this construction, a characterization of logspace (deterministic and non-deterministic) computation is given via a synctactic restriction, using an encoding of words that derives from proof theory. We show that the acceptance of a word by an observation (the counterpart of a program in the encoding) can be decided within logarithmic space, by reducing this problem to the acyclicity of a graph. We show moreover that observations are as expressive as two-ways multi-heads finite automata, a kind of pointer machines that is a standard model of logarithmic space computation

    P versus NP and geometry

    Get PDF
    I describe three geometric approaches to resolving variants of P v. NP, present several results that illustrate the role of group actions in complexity theory, and make a first step towards completely geometric definitions of complexity classes.Comment: 20 pages, to appear in special issue of J. Symbolic. Comp. dedicated to MEGA 200

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Unification and Logarithmic Space

    Full text link
    We present an algebraic characterization of the complexity classes Logspace and NLogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is inspired from proof theory and more specifically linear logic and Geometry of Interaction. We show how unification can be used to build a model of computation by means of specific subalgebras associated to finite permutations groups. We then prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. We also show that the construction can naturally represent pointer machines, an intuitive way of understanding logarithmic space computing
    • …
    corecore