13,964 research outputs found

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results

    Low-Cost Learning via Active Data Procurement

    Full text link
    We design mechanisms for online procurement of data held by strategic agents for machine learning tasks. The challenge is to use past data to actively price future data and give learning guarantees even when an agent's cost for revealing her data may depend arbitrarily on the data itself. We achieve this goal by showing how to convert a large class of no-regret algorithms into online posted-price and learning mechanisms. Our results in a sense parallel classic sample complexity guarantees, but with the key resource being money rather than quantity of data: With a budget constraint BB, we give robust risk (predictive error) bounds on the order of 1/B1/\sqrt{B}. Because we use an active approach, we can often guarantee to do significantly better by leveraging correlations between costs and data. Our algorithms and analysis go through a model of no-regret learning with TT arriving pairs (cost, data) and a budget constraint of BB. Our regret bounds for this model are on the order of T/BT/\sqrt{B} and we give lower bounds on the same order.Comment: Full version of EC 2015 paper. Color recommended for figures but nonessential. 36 pages, of which 12 appendi

    Robust Interactive Learning

    Full text link
    In this paper we propose and study a generalization of the standard active-learning model where a more general type of query, class conditional query, is allowed. Such queries have been quite useful in applications, but have been lacking theoretical understanding. In this work, we characterize the power of such queries under two well-known noise models. We give nearly tight upper and lower bounds on the number of queries needed to learn both for the general agnostic setting and for the bounded noise model. We further show that our methods can be made adaptive to the (unknown) noise rate, with only negligible loss in query complexity
    • …
    corecore