597 research outputs found

    Nonlinear programming without a penalty function or a filter

    Get PDF
    A new method is introduced for solving equality constrained nonlinear optimization problems. This method does not use a penalty function, nor a barrier or a filter, and yet can be proved to be globally convergent to first-order stationary points. It uses different trust-regions to cope with the nonlinearities of the objective function and the constraints, and allows inexact SQP steps that do not lie exactly in the nullspace of the local Jacobian. Preliminary numerical experiments on CUTEr problems indicate that the method performs well

    Solving Mathematical Programs with Equilibrium Constraints as Nonlinear Programming: A New Framework

    Full text link
    We present a new framework for the solution of mathematical programs with equilibrium constraints (MPECs). In this algorithmic framework, an MPECs is viewed as a concentration of an unconstrained optimization which minimizes the complementarity measure and a nonlinear programming with general constraints. A strategy generalizing ideas of Byrd-Omojokun's trust region method is used to compute steps. By penalizing the tangential constraints into the objective function, we circumvent the problem of not satisfying MFCQ. A trust-funnel-like strategy is used to balance the improvements on feasibility and optimality. We show that, under MPEC-MFCQ, if the algorithm does not terminate in finite steps, then at least one accumulation point of the iterates sequence is an S-stationary point

    Efficient Trust Region Methods for Nonconvex Optimization

    Get PDF
    For decades, a great deal of nonlinear optimization research has focused on modeling and solving convex problems. This has been due to the fact that convex objects typically represent satisfactory estimates of real-world phenomenon, and since convex objects have very nice mathematical properties that makes analyses of them relatively straightforward. However, this focus has been changing. In various important applications, such as large-scale data fitting and learning problems, researchers are starting to turn away from simple, convex models toward more challenging nonconvex models that better represent real-world behaviors and can offer more useful solutions.To contribute to this new focus on nonconvex optimization models, we discuss and present new techniques for solving nonconvex optimization problems that possess attractive theoretical and practical properties. First, we propose a trust region algorithm that, in the worst case, is able to drive the norm of the gradient of the objective function below a prescribed threshold of ϔ∈(0,∞)\epsilon \in (0,\infty) after at most O(ϔ−3/2)\mathcal{O}(\epsilon^{-3/2}) iterations, function evaluations, and derivative evaluations. This improves upon the O(ϔ−2)\mathcal{O}(\epsilon^{-2}) bound known to hold for some other trust region algorithms and matches the O(ϔ−3/2)\mathcal{O}(\epsilon^{-3/2}) bound for the recently proposed Adaptive Regularisation framework using Cubics, also known as the ARC algorithm. Our algorithm, entitled TRACE, follows a trust region framework, but employs modified step acceptance criteria and a novel trust region update mechanism that allow the algorithm to achieve such a worst-case global complexity bound. Importantly, we prove that our algorithm also attains global and fast local convergence guarantees under similar assumptions as for other trust region algorithms. We also prove a worst-case upper bound on the number of iterations the algorithm requires to obtain an approximate second-order stationary point.The aforementioned algorithm is based on techniques that require an exact subproblem solution in every iteration. This is a reasonable assumption for small- to medium-scale problems, but is intractable for large-scale optimization. To address this issue, the second project of this thesis involves a proposal of a general \emph{inexact} framework, which contains a wide range of algorithms with optimal complexity bounds, through defining a novel primal-dual subproblem and a set of loose conditions for an inexact solution of it. The proposed framework enjoys the same worst-case iteration complexity bounds for locating approximate first- and second-order stationary points as \RACE. However, it does not require one to solve subproblems exactly. In addition, the framework allows one to use inexact Newton steps whenever possible, a feature which allows the algorithm to use Hessian matrix-free approaches such as the \emph{conjugate gradient} method. This improves the practical performance of the algorithm, as our numerical experiments show.We close by proposing a globally convergent trust funnel algorithm for equality constrained optimization. The proposed algorithm, under some standard assumptions, is able to find a relative first-order stationary point after at most O(ϔ−3/2)\mathcal{O}(\epsilon^{-3/2}) iterations. This matches the complexity bound of the recently proposed Short-Step ARC algorithm. Our proposed algorithm uses the step decomposition and feasibility control mechanism of a trust funnel algorithm, but incorporates ideas from our TRACE framework in order to achieve good complexity bounds

    A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat Dynamics

    Get PDF
    Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints. An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*). The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using BĂ©zier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional. Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation. Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant.Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche SuchrĂ€ume, deren vollstĂ€ndige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, fĂŒr die nur selten eine geschlossene mathematische Beschreibung existiert. Bei der in dieser Arbeit betrachteten Anwendung auf FlĂ€chenflugzeuge kommen differentielle Randbedingungen und beschrĂ€nkte SystemgrĂ¶ĂŸen erschwerend hinzu. Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die SuchraumkomplexitĂ€t durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfĂŒllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels BĂ©zier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral ĂŒberprĂŒft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lĂ€sst. Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstĂŒtzen. Hierzu wird die aktuelle Zwischenlösung des Planers als InitialschĂ€tzung fĂŒr ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme. Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusĂ€tzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird. Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen BerĂŒcksichtigung von Hindernissen erweitert. Experimentelle Untersuchungen bestĂ€tigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung ĂŒberlegen sind. Der erforderliche Rechenaufwand ist zwar betrĂ€chtlich, aber unter realistischen Bedingungen praktisch beherrschbar
    • 

    corecore