14 research outputs found

    Auditable Restoration of Distributed Programs

    Full text link
    We focus on a protocol for auditable restoration of distributed systems. The need for such protocol arises due to conflicting requirements (e.g., access to the system should be restricted but emergency access should be provided). One can design such systems with a tamper detection approach (based on the intuition of "break the glass door"). However, in a distributed system, such tampering, which are denoted as auditable events, is visible only for a single node. This is unacceptable since the actions they take in these situations can be different than those in the normal mode. Moreover, eventually, the auditable event needs to be cleared so that system resumes the normal operation. With this motivation, in this paper, we present a protocol for auditable restoration, where any process can potentially identify an auditable event. Whenever a new auditable event occurs, the system must reach an "auditable state" where every process is aware of the auditable event. Only after the system reaches an auditable state, it can begin the operation of restoration. Although any process can observe an auditable event, we require that only "authorized" processes can begin the task of restoration. Moreover, these processes can begin the restoration only when the system is in an auditable state. Our protocol is self-stabilizing and has bounded state space. It can effectively handle the case where faults or auditable events occur during the restoration protocol. Moreover, it can be used to provide auditable restoration to other distributed protocol.Comment: 10 page

    Volume Segmentation of 3-dimensional Images

    Get PDF
    We present a practical method to segment large medical images that takes the whole 3-dimensional structure into account. We use a Union-Find data structure to record and maintain the necessary information during the segmentation process. Due to the large data size, we are forced to divide our process in two parts: a "weak segmentation" of the individual sections and a global integration of all the data. This method shows good results on computer tomographies

    Quantitative Timed Analysis of Interactive Markov Chains

    Get PDF
    Abstract This paper presents new algorithms and accompanying tool support for analyzing interactive Markov chains (IMCs), a stochastic timed 1 1 2-player game in which delays are exponentially distributed. IMCs are compositional and act as semantic model for engineering for-malisms such as AADL and dynamic fault trees. We provide algorithms for determining the extremal expected time of reaching a set of states, and the long-run average of time spent in a set of states. The prototypical tool Imca supports these algorithms as well as the synthesis of ε-optimal piecewise constant timed policies for timed reachability objectives. Two case studies show the feasibility and scalability of the algorithms.

    Subject index volumes 1–92

    Get PDF

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF
    corecore