4,207 research outputs found

    Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

    Full text link
    We present global convergence rates for a line-search method which is based on random first-order models and directions whose quality is ensured only with certain probability. We show that in terms of the order of the accuracy, the evaluation complexity of such a method is the same as its counterparts that use deterministic accurate models; the use of probabilistic models only increases the complexity by a constant, which depends on the probability of the models being good. We particularize and improve these results in the convex and strongly convex case. We also analyze a probabilistic cubic regularization variant that allows approximate probabilistic second-order models and show improved complexity bounds compared to probabilistic first-order methods; again, as a function of the accuracy, the probabilistic cubic regularization bounds are of the same (optimal) order as for the deterministic case

    Successive Convex Approximation Algorithms for Sparse Signal Estimation with Nonconvex Regularizations

    Full text link
    In this paper, we propose a successive convex approximation framework for sparse optimization where the nonsmooth regularization function in the objective function is nonconvex and it can be written as the difference of two convex functions. The proposed framework is based on a nontrivial combination of the majorization-minimization framework and the successive convex approximation framework proposed in literature for a convex regularization function. The proposed framework has several attractive features, namely, i) flexibility, as different choices of the approximate function lead to different type of algorithms; ii) fast convergence, as the problem structure can be better exploited by a proper choice of the approximate function and the stepsize is calculated by the line search; iii) low complexity, as the approximate function is convex and the line search scheme is carried out over a differentiable function; iv) guaranteed convergence to a stationary point. We demonstrate these features by two example applications in subspace learning, namely, the network anomaly detection problem and the sparse subspace clustering problem. Customizing the proposed framework by adopting the best-response type approximation, we obtain soft-thresholding with exact line search algorithms for which all elements of the unknown parameter are updated in parallel according to closed-form expressions. The attractive features of the proposed algorithms are illustrated numerically.Comment: submitted to IEEE Journal of Selected Topics in Signal Processing, special issue in Robust Subspace Learnin
    • …
    corecore