18,441 research outputs found

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klog⁥n)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight ⌈λ−12⌉(1−Δ)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(log⁥n)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(log⁥n)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    On the probabilistic min spanning tree Problem

    Get PDF
    We study a probabilistic optimization model for min spanning tree, where any vertex vi of the input-graph G(V,E) has some presence probability pi in the final instance Gâ€Č ⊂ G that will effectively be optimized. Suppose that when this “real” instance Gâ€Č becomes known, a spanning tree T, called anticipatory or a priori spanning tree, has already been computed in G and one can run a quick algorithm (quicker than one that recomputes from scratch), called modification strategy, that modifies the anticipatory tree T in order to fit G â€Č. The goal is to compute an anticipatory spanning tree of G such that, its modification for any G â€Č ⊆ G is optimal for G â€Č. This is what we call probabilistic min spanning tree problem. In this paper we study complexity and approximation of probabilistic min spanning tree in complete graphs under two distinct modification strategies leading to different complexity results for the problem. For the first of the strategies developed, we also study two natural subproblems of probabilistic min spanning tree, namely, the probabilistic metric min spanning tree and the probabilistic min spanning tree 1,2 that deal with metric complete graphs and complete graphs with edge-weights either 1, or 2, respectively

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs
    • 

    corecore