581 research outputs found

    Simultaneous diagonalisation of the covariance and complementary covariance matrices in quaternion widely linear signal processing

    Full text link
    Recent developments in quaternion-valued widely linear processing have established that the exploitation of complete second-order statistics requires consideration of both the standard covariance and the three complementary covariance matrices. Although such matrices have a tremendous amount of structure and their decomposition is a powerful tool in a variety of applications, the non-commutative nature of the quaternion product has been prohibitive to the development of quaternion uncorrelating transforms. To this end, we introduce novel techniques for a simultaneous decomposition of the covariance and complementary covariance matrices in the quaternion domain, whereby the quaternion version of the Takagi factorisation is explored to diagonalise symmetric quaternion-valued matrices. This gives new insights into the quaternion uncorrelating transform (QUT) and forms a basis for the proposed quaternion approximate uncorrelating transform (QAUT) which simultaneously diagonalises all four covariance matrices associated with improper quaternion signals. The effectiveness of the proposed uncorrelating transforms is validated by simulations on both synthetic and real-world quaternion-valued signals.Comment: 41 pages, single column, 10 figure

    An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks

    Get PDF
    This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable

    Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

    Get PDF
    summary:In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the nn-dimensional Clifford-valued neural network into 2mn2^mn-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results

    Synchronization and state estimation for discrete-time complex networks with distributed delays

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays. The complex networks addressed which include neural and social networks as special cases are quite general. Rather than the commonly used Lipschitz-type function, a more general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. The distributed infinite time delays in the discrete-time domain are first defined. By utilizing a novel Lyapunov-Krasovskii functional and the Kronecker product, it is shown that the addressed discrete-time complex network with distributed delays is synchronized if certain linear matrix inequalities (LMIs) are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, for all admissible discrete and distributed delays, the dynamics of the estimation error is guaranteed to be globally asymptotically stable. Again, an LMI approach is developed for the state estimation problem. Two simulation examples are provided to show the usefulness of the proposed global synchronization and state estimation conditions. It is worth pointing out that our main results are valid even if the nominal subsystems within the network are unstable

    Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays

    Get PDF
    The ordinary Takagi-Sugeno (TS) fuzzy models have provided an approach to represent complex nonlinear systems to a set of linear sub-models by using fuzzy sets and fuzzy reasoning. In this paper, stochastic fuzzy Hopfield neural networks with time-varying delays (SFVDHNNs) are studied. The model of SFVDHNN is first establisbed as a modified TS fuzzy model in which the consequent parts are composed of a set of stochastic Hopfield neural networks with time-varying delays. Secondly, the global exponential stability in the mean square for SFVDHNN is studied by using the Lyapunov-Krasovskii approach. Stability criterion is derived in terms of linear matrix inequalities (LMIs), which can be effectively solved by some standard numerical packages. © 2005 IEEE.published_or_final_versio

    Learning Neural Graph Representations in Non-Euclidean Geometries

    Get PDF
    The success of Deep Learning methods is heavily dependent on the choice of the data representation. For that reason, much of the actual effort goes into Representation Learning, which seeks to design preprocessing pipelines and data transformations that can support effective learning algorithms. The aim of Representation Learning is to facilitate the task of extracting useful information for classifiers and other predictor models. In this regard, graphs arise as a convenient data structure that serves as an intermediary representation in a wide range of problems. The predominant approach to work with graphs has been to embed them in an Euclidean space, due to the power and simplicity of this geometry. Nevertheless, data in many domains exhibit non-Euclidean features, making embeddings into Riemannian manifolds with a richer structure necessary. The choice of a metric space where to embed the data imposes a geometric inductive bias, with a direct impact on the performance of the models. This thesis is about learning neural graph representations in non-Euclidean geometries and showcasing their applicability in different downstream tasks. We introduce a toolkit formed by different graph metrics with the goal of characterizing the topology of the data. In that way, we can choose a suitable target embedding space aligned to the shape of the dataset. By virtue of the geometric inductive bias provided by the structure of the non-Euclidean manifolds, neural models can achieve higher performances with a reduced parameter footprint. As a first step, we study graphs with hierarchical structures. We develop different techniques to derive hierarchical graphs from large label inventories. Noticing the capacity of hyperbolic spaces to represent tree-like arrangements, we incorporate this information into an NLP model through hyperbolic graph embeddings and showcase the higher performance that they enable. Second, we tackle the question of how to learn hierarchical representations suited for different downstream tasks. We introduce a model that jointly learns task-specific graph embeddings from a label inventory and performs classification in hyperbolic space. The model achieves state-of-the-art results on very fine-grained labels, with a remarkable reduction of the parameter size. Next, we move to matrix manifolds to work on graphs with diverse structures and properties. We propose a general framework to implement the mathematical tools required to learn graph embeddings on symmetric spaces. These spaces are of particular interest given that they have a compound geometry that simultaneously contains Euclidean as well as hyperbolic subspaces, allowing them to automatically adapt to dissimilar features in the graph. We demonstrate a concrete implementation of the framework on Siegel spaces, showcasing their versatility on different tasks. Finally, we focus on multi-relational graphs. We devise the means to translate Euclidean and hyperbolic multi-relational graph embedding models into the space of symmetric positive definite (SPD) matrices. To do so we develop gyrocalculus in this geometry and integrate it with the aforementioned framework

    Robust passivity and passification of stochastic fuzzy time-delay systems

    Get PDF
    The official published version can be obtained from the link below.In this paper, the passivity and passification problems are investigated for a class of uncertain stochastic fuzzy systems with time-varying delays. The fuzzy system is based on the Takagi–Sugeno (T–S) model that is often used to represent the complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning. To reflect more realistic dynamical behaviors of the system, both the parameter uncertainties and the stochastic disturbances are considered, where the parameter uncertainties enter into all the system matrices and the stochastic disturbances are given in the form of a Brownian motion. We first propose the definition of robust passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the Itô differential rule and the matrix analysis techniques, we establish several sufficient criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop stochastic fuzzy time-delay system is robustly passive in the sense of expectation. The derived criteria, which are either delay-independent or delay-dependent, are expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.This work was supported by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers 200802861044, the National Natural Science Foundation of China under Grant 60804028 and the Royal Society of the United Kingdom
    corecore