108 research outputs found

    Cyclic LTI systems in digital signal processing

    Get PDF
    Cyclic signal processing refers to situations where all the time indices are interpreted modulo some integer L. In such cases, the frequency domain is defined as a uniform discrete grid (as in L-point DFT). This offers more freedom in theoretical as well as design aspects. While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past. In this paper, we introduce the fundamentals of cyclic multirate systems and filter banks, presenting several important differences between the cyclic and noncyclic cases. Cyclic systems with allpass and paraunitary properties are studied. The paraunitary interpolation problem is introduced, and it is shown that the interpolation does not always succeed. State-space descriptions of cyclic LTI systems are introduced, and the notions of reachability and observability of state equations are revisited. It is shown that unlike in traditional linear systems, these two notions are not related to the system minimality in a simple way. Throughout the paper, a number of open problems are pointed out from the perspective of the signal processor as well as the system theorist

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Design and multiplier-less implementation of a class of two-channel PR FIR filterbanks and wavelets with low system delay

    Get PDF
    In this paper, a new method for designing two-channel PR FIR filterbanks with low system delay is proposed. It is based on the generalization of the structure previously proposed by Phoong et al. Such structurally PR filterbanks are parameterized by two functions (β(z) and α(z)) that can be chosen as linear-phase FIR or allpass functions to construct FIR/IIR filterbanks with good frequency characteristics. The case of using identical β(z) and α(z) was considered by Phoong et al. with the delay parameter M chosen as 2N - 1. In this paper, the more general case of using different nonlinear-phase FIR functions for β(z) and α(z) is studied. As the linear-phase constraint is relaxed, the lengths of β(z) and α(z) are no longer restricted by the delay parameters of the filterbanks. Hence, higher stopband attenuation can still be achieved at low system delay. The design of the proposed low-delay filterbanks is formulated as a complex polynomial approximation problem, which can be solved by the Remez exchange algorithm or analytic formula with very low complexity. In addition, the orders and delay parameters can be estimated from the given filter specifications using a simple empirical formula. Therefore, low-delay two-channel PR filterbanks with flexible stopband attenuation and cutoff frequencies can be designed using existing filter design algorithms. The generalization of the present approach to the design of a class of wavelet bases associated with these low-delay filterbanks and its multiplier-less implementation using the sum of powers-of-two coefficients are also studied.published_or_final_versio

    Steerable filters generated with the hypercomplex dual-tree wavelet transform

    Get PDF
    The use of wavelets in the image processing domain is still in its infancy, and largely associated with image compression. With the advent of the dual-tree hypercomplex wavelet transform (DHWT) and its improved shift invariance and directional selectivity, applications in other areas of image processing are more conceivable. This paper discusses the problems and solutions in developing the DHWT and its inverse. It also offers a practical implementation of the algorithms involved. The aim of this work is to apply the DHWT in machine vision. Tentative work on a possible new way of feature extraction is presented. The paper shows that 2-D hypercomplex basis wavelets can be used to generate steerable filters which allow rotation as well as translation.</p

    Wavelet Filter Banks Using Allpass Filters

    Get PDF
    Allpass filter is a computationally efficient versatile signal processing building block. The interconnection of allpass filters has found numerous applications in digital filtering and wavelets. In this chapter, we discuss several classes of wavelet filter banks by using allpass filters. Firstly, we describe two classes of orthogonal wavelet filter banks composed of two real allpass filters or a complex allpass filter, and then consider design of orthogonal filter banks without or with symmetry, respectively. Next, we present two classes of filter banks by using allpass filters in lifting scheme. One class is causal stable biorthogonal wavelet filter bank and another class is orthogonal wavelet filter bank, all with approximately linear phase response. We also give several design examples to demonstrate the effectiveness of the proposed method

    各種の性質を改善した直交DTCWTの設計に関する研究

    Get PDF
    The Dual tree complex wavelet transforms (DTCWTs) have been found to be successful in many applications of signal and image processing. DTCWTs employ two real wavelet transforms, where one wavelet corresponds to the real part of complex wavelet and the other is the imaginary part. Two wavelet bases are required to be a Hilbert transform pair. Thus, DTCWTs are nearly shift invariant and have a good directional selectivity in two or higher dimensions with limited redundancies. In this dissertation, we propose two new classes of DTCWTs with improved properties. In Chapter 2, we review the Fourier transform at first and then introduce the fundamentals of dual tree complex wavelet transform. The wavelet transform has been proved to be a successful tool to express the signal in time and frequency domain simultaneously. To obtain the wavelet coefficients efficiently, the discrete wavelet transform has been introduced since it can be achieved by a tree of two-channel filter banks. Then, we discuss the design conditions of two-channel filter banks, i.e., the perfect reconstruction and orthonormality. Additionally, some properties of scaling and wavelet functions including orthonormality, symmetry and vanishing moments are also given. Moreover, the structure of DTCWT is introduced, where two wavelet bases are required to form a Hilbert transform pair. Thus, the corresponding scaling lowpass filters must satisfy the half-sample delay condition. Finally, the objective measures of quality are given to evaluate the performance of the complex wavelet. In Chapter 3, we propose a new class of DTCWTs with improved analyticity and frequency selectivity by using general IIR filters with numerator and denominator of different degree. In the common-factor technique proposed by Selesnick, the maximally at allpass filter was used to satisfy the halfsample delay condition, resulting in poor analyticity of complex wavelets. Thus, to improve the analyticity of complex wavelets, we present a method for designing allpass filters with the specified degree of flatness and equiripple phase response in the approximation band. Moreover, to improve the frequency selectivity of scaling lowpass filters, we locate the specified number of zeros at z = -1 and minimize the stopband error. The well-known Remez exchange algorithm has been applied to approximate the equiripple response. Therefore, a set of filter coefficients can be easily obtained by solving the eigenvalue problem. Furthermore, we investigate the performance on the proposed DTCWTs and dedicate how to choose the approximation band and stopband properly. It is shown that the conventional DTCWTs proposed by Selesnick are only the special cases of DTCWTs proposed in this dissertation. In Chapter 4, we propose another class of almost symmetric DTCWTs with arbitrary center of symmetry. We specify the degree of flatness of group delay, and the number of vanishing moments, then apply the Remez exchange algorithm to minimize the difference between two scaling lowpass filters in the frequency domain, in order to improve the analyticity of complex wavelets. Therefore, the equiripple behaviour of the error function can be obtained through a few iterations. Moreover, two scaling lowpass filters can be obtained simultaneously. As a result, the complex wavelets are orthogonal and almost symmetric, and have the improved analyticity. Since the group delay of scaling lowpass filters can be arbitrarily specified, the scaling functions have the arbitrary center of symmetry. Finally, several experiments of signal denoising are carried out to demonstrate the efficiency of the proposed DTCWTs. It is clear that the proposed DTCWTs can achieve better performance on noise reduction.電気通信大学201

    Theory of optimal orthonormal subband coders

    Get PDF
    The theory of the orthogonal transform coder and methods for its optimal design have been known for a long time. We derive a set of necessary and sufficient conditions for the coding-gain optimality of an orthonormal subband coder for given input statistics. We also show how these conditions can be satisfied by the construction of a sequence of optimal compaction filters one at a time. Several theoretical properties of optimal compaction filters and optimal subband coders are then derived, especially pertaining to behavior as the number of subbands increases. Significant theoretical differences between optimum subband coders, transform coders, and predictive coders are summarized. Finally, conditions are presented under which optimal orthonormal subband coders yield as much coding gain as biorthogonal ones for a fixed number of subbands

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide
    corecore